Derivatives of Exponential Functions

Name:_____

This activity sheet is designed to find the derivative of the function $f(x) = b^x$.

(2) What can be said about h and h'?

(3) To investigate the derivative of $f(x) = b^x$, we consider the ratio of the derivative to the function itself. In other words, we want to consider the set of ordered pairs of the form (*b*, ratio of y'/y) for a variety of values of *b*.

Begin with the specific case where $b = 2$. On the "y=" screen, let :			
(TI-89)	y1=2^x,	$y_{2} = nDeriv(y_{1}(x), x)$, and let $y_{3} = y_{2}(x)/y_{1}(x)$	OR
(TI-84)	$Y_1 = 2^X,$	$Y_2 = nDeriv(Y_1, X, X)$ and $Y_3 = Y_2/Y_1$	

Use "Table." What is true about y3? What is its value?

Change y1 and repeat this process for each of the values of *b* given below. Fill in the ordered pairs with y3 = ratio of y'/y. Plot these ordered pairs on the graph.

What does this function look like?

In short, we have the relationship (*b*, _____). This means that the ratio

of
$$\frac{\frac{d}{dx}(b^x)}{b^x} =$$
_____, so the derivative of $f(x) = b^x$ is $\frac{d}{dx}(b^x) =$ _____.

(4) We've seen that the derivative of $y = b^x$ is a multiple of the function itself. Show this by setting up the derivative by definition and factoring out b^x . The remaining

expression may be seen as the derivative of _____ at a =_____.

- (5) What does your derivative rule imply about the derivative of $y = e^x$? Show.
- (6) Find the derivative of each of the following using the rule found above. (For some, you will want to rewrite the expression using properties of exponents.)

$$y = 10^x \qquad \qquad y = 4 \cdot 3^x \qquad \qquad y = 4^{2x}$$

$$y = (1/2)^x \qquad \qquad y = \frac{3}{5^x}$$

$$y = x^2 + 2^x + 2$$
 $y = 3 \cdot 6^{-x}$

$$y = e^{2x} + x^{2e}$$
 $y = 3e^{x+2} + 5x^{-1}$