Back to \(f(x) = \cos x \) ...
In class, we found a polynomial that can be extended to give

\[
P(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
\]

Let \(P_n(x) \) refer to the polynomial approximating the function \(f \) which has "order of contact \(n \)" at a point \(x = a \). That is to say, \(P_n^{(k)}(a) = f^{(k)}(a) \) for \(k = 0, 1, 2, 3, \ldots, n \), and here we have \(a = 0 \).

For example, with \(f(x) = \cos x \), we have

\[
P_4(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} \quad \text{and} \quad P_7(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}
\]

Note that "\(n \)" can cause problems. Does it mean the \(n \)th term? the order of contact? the value of \(n \) in the summation? Be careful!

(1) If we choose \(P_4(x) \), giving us 3 non-zero terms, evaluate \(f(x) \) and \(P_4(x) \) for the following values of \(x = a \).

\[
f(a) \quad g(a) = P_4(a)
\]

\[
a = 2
\]

\[
a = 1
\]

\[
a = 0.5
\]

For roughly what values of \(x \) does \(P_4 \) seem to be a good approximation of \(f \)?

(2) Again using 3 non-zero terms, let \(x = 1 \). We want to find an upper bound for the error.

(a) First, find the actual error (according to your calculator) by evaluating \(| \cos 1 - P_4(1) |\).

(b) Use the alternating series error approximation to find an upper bound for the error.

(3) Still using 3 terms of \(P \), what are the possibilities for \(x \) if the error is to be less than 0.00005?
Set the window on the calculator so that \(-7 \leq x \leq 7\) and \(-2 \leq y \leq 2\).

(4) Sketch the graphs of \(P_4(x)\) and \(f(x)\) below.

For what values of \(x\) does \(P_4\) seem to be a fairly good approximation of \(f\) ?

(5) Sketch the graphs of \(P_8(x)\) and \(f(x)\) below.

For what values of \(x\) does \(P_8\) seem to be a fairly good approximation of \(f\) ?

(6) Sketch the graphs of \(P_{12}(x)\) and \(f(x)\) below.

For what values of \(x\) does \(P_{12}\) seem to be a fairly good approximation of \(f\) ?
(7) Based on these graphs, can you make any guesses about the values of \(x \) for which the infinite series \(P \) converges?

Do you think that there is a value of \(n \) such that \(P_n(x) \) will have an error less than 0.0001 for all \(x \) in the interval \(-1000 \leq x \leq 1000\)? Why or why not?

(8) Determine the values of \(x \) for which the infinite series converges by using an appropriate test.
(9) Compare this result for \(y = \cos(x) \) to the intervals found for \(y = \ln(1 + x) \) and \(y = \tan^{-1}x \).

Can you think of any possible explanations for this distinction?

More on error analysis...

(10) Using \(P_{14}(x) \) and \(x = 6 \), find an upper bound for the error.

(11) Again using \(P_{14}(x) \), what are the possibilities for \(x \) if the error is to be less than 0.0005?

(12) If \(x = 4 \), how many terms are necessary to be sure that the error is less than .01?