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ABSTRACT

Equidimensional Adic Eigenvarieties for Groups with Discrete Series

Daniel Robert Gulotta

We extend Urban’s construction of eigenvarieties for reductive groups G such that

G(R) has discrete series to include characteristic p points at the boundary of weight

space. In order to perform this construction, we define a notion of “locally analytic”

functions and distributions on a locally Qp-analytic manifold taking values in a com-

plete Tate Zp-algebra in which p is not necessarily invertible. Our definition agrees

with the definition of locally analytic distributions on p-adic Lie groups given by

Johansson and Newton.



Contents

Acknowledgments iii

1. Introduction 1

2. Modules over complete Tate rings 4

2.1. Definitions 4

2.2. Spectral theory 5

2.3. Norms 6

3. Locally analytic functions and distributions 7

3.1. Preliminaries 7

3.2. Definitions 9

3.3. Properties of locally analytic functions and distributions 12

3.4. Gluing 17

3.5. Geometric interpretation of distributions 18

4. Overconvergent cohomology 19

4.1. Locally symmetric spaces 19

4.2. Hecke action 21

4.3. Topological properties of Hecke operators 23

4.4. Characteristic power series 24

5. Eisenstein and cuspidal contributions to characteristic power series 25

5.1. Preliminaries 25

5.2. Cohomology of the Borel-Serre boundary 27

5.3. Hecke action 29

5.4. Image of the map Rπ∗ι
∗ 30

5.5. The complex C•G,Kp,λ,cusp 34

6. Theory of determinants 35

i



7. Construction of the eigenvariety 38

7.1. Weight space and Fredholm series 38

7.2. Pieces of the eigenvariety 39

7.3. Gluing 41

References 42

ii



Acknowledgments

I would like to thank my advisor, Eric Urban, for suggesting my thesis problem and

for many helpful discussions. David Hansen and Shrenik Shah also patiently answered

many of my questions. I benefited from interactions with many other Columbia fac-

ulty members, including Ali Altug, Johan de Jong, Dorian Goldfeld, Michael Harris,

Daniel Litt, Chao Li, Wei Zhang, and Yihang Zhu.

My fellow graduate students taught me a lot and made my time at Columbia more

enjoyable. I would like to thank Pak-Hin Lee for many adventures, and Rahul Krishna

and Vivek Pal for guidance during my early years as a graduate student. I found the

learning seminars at Columbia very helpful; I thank the above mentioned students as

well as Karol Koziol, Shizhang Li, Qixiao Ma, Sam Mundy, and Remy van Dobben

de Bruyn for their contributions to these seminars. I also enjoyed hanging out with

Cameron Bruggeman, Jordan Keller, Joe Kramer-Miller, Paul Lewis, Feiqi Jiang,

Sebastien Picard, and Mike Wong.

I would like to thank my friends Yaim Cooper and Ruozhou Jia, the MIT Mystery

Hunt, and New York’s art museums for giving me occasional breaks from my studies.

The University of Chicago Young Scholars Program and Canada/USA Mathcamp

provided me with early opportunities to think deeply about mathematics. Mathcamp

also played a large part in my decision to switch from physics to number theory. As a

physics grad student, I had struggled to find enthusiasm for the sorts of questions that

other string theorists were studying. Visiting Mathcamp in 2010 and remembering

the many hours I had spent pondering topics like ring theory and topology convinced

me that mathematics was where I really belonged.

I would like to thank my physics PhD advisor, Christopher Herzog, for his under-

standing and support when I decided that I wanted to switch fields.

iii



I would like to thank Kiran Kedlaya and Shou-Wu Zhang for their guidance when

I was an undergraduate and physics PhD student, respectively.

I enjoyed my time at the Arizona Winter School, and in particular I would like to

thank Ana Caraiani and Christian Johansson for organizing a project on infinite level

Shimura varieties.

Last, but certainly not least, I would like to thank my parents. They have always

been extremely supportive of me; it is hard to imagine where I would be without their

support and guidance.

iv



1. Introduction

The study of p-adic families of automorphic forms began with the work of Hida

[Hid86,Hid88,Hid94]. Coleman and Mazur [CM98,Col96,Col97] introduced the eigen-

curve, which parameterizes overconvergent p-adic modular forms of finite slope. Cole-

man and Mazur used a geometric definition of p-adic modular forms, based on the

original definition of Katz [Kat73]. It is also possible to define p-adic automorphic

forms using a cohomological approach. Several constructions of eigenvarieties are

based on overconvergent cohomology, introduced by Stevens [Ste94] and later gen-

eralized by Ash-Stevens [AS08]. These include the constructions of Urban [Urb11]

and Hansen [Han15]. Emerton [Eme06b] has also constructed eigenvarieties using a

somewhat different cohomological approach.

The eigenvarieties mentioned above are all rigid analytic spaces, so they parame-

terize forms that have coefficients in Qp-algebras. Recently, there has been interest in

studying forms with coefficients in characteristic p. Liu, Wan, and Xiao [LWX17] con-

structed ZpJZ×p K-modules of automorphic forms for definite quaternion algebras. By

taking quotients of this module, one can obtain both traditional p-adic automorphic

forms and forms with coefficients in FpJZ×p K whose existence had been conjectured

by Coleman. Using these modules, Liu, Wan, and Xiao proved certain cases of a

conjecture of Coleman-Mazur and Buzzard-Kilford [BK05] concerning the eigenval-

ues of the Up operator near the boundary of the weight space. Andreatta, Iovita,

and Pilloni [AIP] constructed an eigencurve that included characteristic p points by

extending Katz’s definition of p-adic modular forms.

In this paper, we will show how Urban’s eigenvarieties can be extended to include

the characteristic p points at the boundary of weight space.
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In order to explain our results in more detail, we will first describe the basic idea of

overconvergent cohomology. Let G be a reductive algebraic group over Q such that

G(Qp) is quasisplit. Let A be the adeles over Q, let Ap
f be the finite adeles away from

p, let G+
∞ be the identity component of G(R), and let ZG be the center of G. Let T0

be a maximal compact torus of G(Qp), and let N−0 be an open compact subgroup of

a maximal unipotent subgroup of G(Qp). We may consider the space

X := G(A)/KpG+
∞

as a locally Qp-analytic manifold. Let F be a finite extension of Qp, and let λ :

T0 → F× be a continuous homomorphism. Let Dc,λ be the space of compactly

supported F -valued locally analytic distributions on X , modulo the relations that

right translation by N−0 acts as the identity, right translation by T0 acts by λ, and

translation by ZG(Q) acts by the identity. One may think of the cohomology groups

H i(Gad(Q),Dc,λ) as spaces of p-adic automorphic forms. One can also study families

of p-adic automorphic forms by replacing F with an affinoid Qp-algebra A.

There is no need to limit ourselves to Qp-algebras, however. The only real constraint

on A is that we must be able to define reasonable notions of locally analytic A-valued

functions and distributions on X . We will give such a definition when A is a complete

Tate Zp-algebra.

To see what the definition should be, we recall a fact from p-adic functional analysis:

a function f : Zp → Qp is locally analytic if and only if it is of the form f(z) =∑∞
n=0 an

(
z
n

)
, where an ∈ A and |an|p go to zero exponentially as n → ∞. We will

therefore define the space A(Zp, A) of “locally analytic” functions Zp → A to be the

set of functions of the form
∑∞

n=0 an
(
z
n

)
, where an ∈ A and an to to zero exponentially

(i. e. α−nan goes to zero for some topologically nilpotent unit α) as n → ∞. If p is
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invertible in A, then this definition is known to coincide with the usual one. We will

make a similar definition for locally analytic functions Zkp → A, and then extend the

definition to locally Qp-analytic manifolds by gluing.

If X is a locally Qp-analytic manifold, then we will define modules A(X,A),

D(X,A), Ac(X,A), Dc(X,A) of locally analytic functions, distributions, compactly

supported functions, and compactly supported distributions, respectively.

Theorem 1.1. The modules A(X,A), D(X,A), Ac(X,A), and Dc(X,A) satisfy the

following properties:

(1) A(X,A) is ring.

(2) If g : X → Y is a locally analytic map, then composition with g induces

homomorphisms A(Y,A)→ A(X,A) and D(X,A)→ D(Y,A).

(3) The functors U 7→ A(U,A) and U 7→ Dc(U,A) are sheaves on X.

(4) If X has the structure of a finitely generated Zp-module, then any continuous

group homomorphism X → A× is in A(X,A).

In [Urb11], Urban constructed eigenvarieties for reductive groups G such that G(R)

has discrete series. We will show how to use the locally analytic distribution modules

mentioned above to extend Urban’s construction to include characteristic p points.

Theorem 1.2. The reduced eigenvariety constructed in [Urb11] extends to an adic

space E over the weight space W = Spa(ZpJT ′K,ZpJT ′K)an, where T ′ is a quotient of a

compact subgroup of a maximal torus in G(Qp). Furthermore, E is equidimensional

and is finite over the spectral variety Z.

We will also correct an error in [Urb11]. In order to argue that certain character

distributions are uniquely defined, Urban assumed that the region of convergence of
3



an Eisenstein series is (up to translation) a union of Weyl chambers. However, this

assumption is not true. We will give a new argument for uniqueness.

As this work was being prepared, I became aware that Christian Johansson and

James Newton were independently pursuing similar work. In [JN], they adapt Hansen’s

construction of eigenvarieties to include the boundary of weight space. Their defini-

tion of locally analytic distributions on Zkp is essentially the same as ours. To construct

distributions on p-adic Lie groups, they use a particular choice of coordinate charts

previously studied by Schneider and Teitelbaum. Our definition of locally analytic

distributions therefore generalizes theirs.

2. Modules over complete Tate rings

We will repeat the basic setup of [Buz07, AIP]. Throughout this section, A will

denote a complete Tate ring.

2.1. Definitions.

Definition 2.1.1. Let X be a quasi-compact topological space, and let M be a

topological abelian group. We define C(X,M) to be the space of continuous functions

X →M , with the topology of uniform convergence.

Definition 2.1.2. Let S be a set, and let M be a topological abelian group. We

define c(S,M) to be the space of functions f : S → M such that for any open

neighborhood U of the identity in M , the complement of f−1(U) is finite. We give

c(S,M) the topology of uniform convergence.

Definition 2.1.3. Let M be a topological A-module. We say that M is orthonor-

malizable if it is isomorphic to c(S,A) for some set S. We say that M is projective if

it is a direct summand of an orthonormalizable A-module.
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Definition 2.1.4. Let M be a topological A-module. We say that a set B ⊂ M is

bounded if for all open neighborhoods U of the identity in M , there exists α ∈ A× so

that αB ⊆ U .

Definition 2.1.5. Let M and N be topological A-modules. We define Lb(M,N) to

be the set of continuous A-module homomorphisms M → N , with the topology of

convergence on bounded subsets.

Definition 2.1.6. Let M and N be topological A-modules. We say that an A-

module homomorphism M → N has has finite rank if its image is a finitely generated

A-module. We say that an element of Lb(M,N) is completely continuous if it is in

the closure of the subspace of finite rank elements.

2.2. Spectral theory.

Definition 2.2.1. We defineA {{X}} to be the set of power series P (X) =
∑∞

n=0 anX
n,

an ∈ A, such that for any α ∈ A×, α−nan → 0 as n→∞.

We say that P (X) ∈ A {{X}} is a Fredholm series if it has leading coefficient 1.

If the adic space Spa(A,A+)×A1 exists, then A {{X}} is its ring of global sections.

Now assume A is Noetherian. If M is a projective A-module and u : M → M is

completely continuous, then we define the Fredholm series P (X) = det(1 − Xu) ∈

A {{X}} as in [Buz07,AIP].

As in [Urb11], we will need to work with complexes. Let M• be a bounded complex

of projective A-modules. We will say that u• : M• →M• is completely continuous if

each ui is completely continuous. If u• is completely continuous, then we define

det(1−Xu•) :=
∏
i

det(1−Xui)(−1)i .

5



Lemma 2.2.2. Let M• be a bounded complex of projective A-modules, and let u•, v• :

M• →M• be completely continuous maps that are homotopy equivalent. Then det(1−

Xu•) = det(1−Xv•).

Proof. The coefficients of det(1 − Xu•)−1 are the traces of u• acting on the “super-

symmetric powers” of M•. The kth supersymmetric power of M• consists of formal

products of k elements of M•, subject to the relation that elements of odd degree

anticommute with each other and all other pairs of elements commute. So it suf-

fices to show that u• and v• have the same trace. Then we may use the argument

of [Urb11, Lemma 2.2.8].

2.3. Norms. It is often convenient to work with norms on A and on A-modules.

Definition 2.3.1. Let α be a topologically nilpotent unit of A. We define an α-

Banach norm on A to be a continuous map | · | : A → R≥0 satisfying the following

conditions.

• |a+ b| ≤ max(|a|, |b|) ∀a, b ∈ A

• |ab| ≤ |a||b| ∀a, b ∈ A

• |0| = 0, |1| = 1, |α||α−1| = 1

• The norm | · | induces the topology of A.

Definition 2.3.2. Let α be a topologically nilpotent unit of A, let |·| be an α-Banach

norm on A, and let M be a topological A-module. We define a | · |-compatible norm

on M to be a continuous map ‖ · ‖ : M → R≥0 satisfying the following conditions.

• ‖m+ n‖ ≤ max(‖m‖, ‖n‖) ∀m,n ∈M

• ‖am‖ ≤ |a|‖m‖ ∀a ∈ A, m ∈M

• ‖0‖ = 0

If, in addition, ‖ · ‖ induces the topology of M , we say that ‖ · ‖ is a Banach norm.
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For any topologically nilpotent unit α ∈ A× and ring of definition A0 of A contain-

ing α, the function | · | : A→ R≥0 defined by

|a| = inf
n∈Z|αna∈A0

pn

is an α-Banach norm.

Furthermore, if M is a topological A-module and M0 is an open neighborhood of

zero in M that is an A0-module, then the function ‖ · ‖ : M → R≥0 defined by

‖m‖ = inf
n∈Z|αnm∈M0

pn

is a norm compatible with | · |. If the sets of the form αnM0 are a basis of open

neighborhoods of zero, then this norm is Banach. �

3. Locally analytic functions and distributions

Now let A be a complete Tate Zp-algebra, and let X be a locally Qp-analytic

manifold. In this section, we will define modules A(X,A) and D(X,A) of “locally

analytic” A-valued functions and distributions on X.

The space X can be covered by coordinate patches isomorphic to Zkp for some k.

We will first define locally analytic functions on these patches and then show that

the construction can be glued.

3.1. Preliminaries. We will recall some basic facts about p-adic functional analysis.

We will make use of the completed group ring ZpJZkpK = lim←−n Zp[Z
k
p/p

nZkp].

For z ∈ Zkp, let [z] denote the corresponding element of ZpJZkpK, and let ∆z = [z]−[0].

Let I∆ denote the augmentation ideal of ZpJZkpK; this is the ideal generated by the

∆v. The maximal ideal of ZpJZkpK is (p) + I∆.
7



We let Zkp act on C(Zkp,M) by translation: for g ∈ C(Zkp,M), (zg)(y) = g(y + z).

This action extends to an action of ZpJZkpK.

To simplify notation, if z = (z1, ..., zk) ∈ Zkp, and n = (n1, ..., nk) ∈ Nk, we will

write
(
z
n

)
for
∏k

i=1

(
zi
ni

)
, and we will write

∑
n for

∑k
i=1 ni.

Lemma 3.1.1 (Mahler’s theorem, [Laz65, Théorème II.1.2.4]). Let M be a complete

topological Zp-module. Suppose that M has a basis of open neighborhoods of zero

that are subgroups of M . There is an isomorphism c(Nk,M)
∼−→ C(Zkp,M) that sends

f ∈ c(Nk,M) to a function g ∈ C(Zkp,M) defined by

g(z) =
∑
n∈Nk

f(n)

(
z

n

)
.

We say that the right-hand side of the above equation is the Mahler expansion of

g.

Lemma 3.1.2 (Amice’s theorem). Let F be a closed subfield of Cp, and let LAh(Zkp, F )

be the space of functions Zkp → F that extend to an analytic function Zkp+phOkCp → Cp.

For f ∈ LAh(Zkp, F ), define

|f | := sup
z∈Zkp+phOkCp

|f(z)|p .

Then the functions
⌊
n1

ph

⌋
!...
⌊
nk
ph

⌋
!
(
z
n

)
form an orthonormal basis for the Banach space

LAh(Zkp, F ). In other words, every f ∈ LAh(Zkp, F ) can be expressed uniquely in the

form

f(z) =
∑
n∈Nk

an

⌊
n1

ph

⌋
!...

⌊
nk
ph

⌋
!

(
z

n

)
,

and |f | = supn∈Nk |an|p.

Proof. This follows from [Ami64, Chapitre 3] (see also [Col10, Théorème I.4.7]). �
8



The following formulas concerning the p-adic valuations of n!, where n is a non-

negative integer, are well-known.

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
n

p− 1
− logp(n+ 1) ≤ vp(n!) ≤ n

p− 1

Consequently, if F is a closed subfield of Cp, and f : Zkp → F is a continuous function

with the Mahler expansion f(z) =
∑

n∈Nk an
(
z
n

)
, then f is locally analytic if and only

if |an|p go to zero exponentially in
∑
n.

3.2. Definitions. The above facts suggest that we should define a function Zkp → A

to be “locally analytic” if the coefficients of its Mahler expansion decrease to zero

exponentially.

We choose a topologically nilpotent α ∈ A×.

Definition 3.2.1. Let r ∈ R+. We define A(α,r)(Zkp, A) to be the space of functions

f ∈ C(Zkp, A) such that for any open neighborhood U of zero in A, there exists N ∈ N

so that for all integers n > N and all δ ∈ In∆, αb−rncδf ∈ C(Zkp, U).

For any open neighborhood U of zero in A, we define Ur ⊂ A(α,r)(Zkp, A) to be the

set of all f ∈ A(α,r)(Zkp, A) such that αb−rncδf ∈ C(Zkp, U) for all n ∈ N and all δ ∈ In∆.

We define a topology on A(α,r)(U,A) by making sets of the form Ur a basis of open

neighborhoods of zero.

We define A(Zkp, A) = lim−→r
A(α,r)(Zkp, A).

The connection between this definition and Mahler expansions will be explained

by Lemma 3.2.3.

The definition of A(α,r)(Zkp, A) is invariant under affine changes of coordinates.
9



For any topologically nilpotent unit α′ ∈ A× and sufficiently small r′ ∈ R+,

A(α′,r′)(Zkp, A) injects into A(α,r)(Zkp, A). So the directed systems (A(α,r)(Zkp, A))r∈R+

and (A(α′,r)(Zkp, A))r∈R+ are cofinal, and A(Zkp, A) does not depend on the choice of α.

If F is a closed subfield of Cp, then there are continuous injections with dense image

A(p,1/(p−1)ph)(Zkp, F ) ↪→ LAh(Zkp, F ) ↪→ A(p,r)(Zkp, F )

for any r < 1
(p−1)ph

, so the directed systems (A(p,r)(Zkp, F ))r∈R+ and (LAh(Zkp, F ))h∈N

are also cofinal.

The module A(α,r)(Zkp, A) can also be defined (albeit less symmetrically) using α-

Banach norms. Choose a ring of definition A0 of A, and define an α-Banach norm

| · | : A→ R≥0 as in section 2.3. Define ‖ · ‖0 : C(Zkp, A)→ R≥0 by

‖f‖0 = sup
z∈Zkp
|f(z)| .

Then

A(α,r)(Zkp, A) =

{
f ∈ C(Zkp, A)

∣∣∣∣∣lim sup
n→∞

sup
δ∈In∆
|αb−rncδf |0 = 0

}
,

and we define ‖ · ‖r : A(α,r)(Zkp, A)→ R≥0 by

‖f‖r = sup
n∈N

sup
δ∈In∆
‖αb−rncδf‖0 .

The functions ‖ · ‖0 and ‖ · ‖r are Banach norms compatible with | · |.

Presumably, it would be reasonable to define A(α,r)(Zkp,M) and A(Zkp,M) for any

topological A-module M that is locally convex in the sense that for some (equivalently,

any) ring of definition A0 of A, M has a basis of open neighborhoods of the identity

that are A0-modules. (We would just replace A with M in the above definition.)

However, we will not need this additional generality.

10



Definition 3.2.2. Let r ∈ R+. We define D(α,r)(Zkp, A) to be the closure of the image

of Lb(C(Zkp, A), A) in Lb(A(α,r)(Zkp, A), A).

We define D(X,A) = lim←−rD
(α,r)(X,A).

The definition of D(X,A) does not depend on the choice of α.

We chose the definitions of A(α,r)(X,A) and D(α,r)(X,A) so that these modules

would be orthonormalizable, as we will now show.

Lemma 3.2.3. There is an isomorphism Ser : c(Nk, A)
∼−→ A(α,r)(Zkp, A) that sends

f ∈ c(Nk, A) to a function g ∈ A(α,r)(Zkp, A) defined by

(3.2.4) g(z) =
∑
n∈Nk

αdr
∑
nef(n)

(
z

n

)
.

There is an isomorphism Ev : D(α,r)(Zkp, A)
∼−→ c(Nk, A) that sends φ ∈ D(α,r)(Zkp, A)

to a function f ∈ c(Nk, A) defined by

(3.2.5) f(n) = αdr
∑
neφ

((
z

n

))
.

Hence A(α,r)(X,A) and D(α,r)(X,A) are orthonormalizable.

Proof. Let f ∈ c(Nk, A), and let g be defined by (3.2.4). By Mahler’s theorem,

g ∈ C(X,A). We observe that for any h ∈ C(X,A) and δ ∈ ZpJZkpK, ‖δh‖0 ≤ ‖h‖0.

Furthermore, if δ ∈ Im∆ , then δ
(
z
n

)
= 0 whenever

∑
n < m. So

‖αb−rmcδg‖0 ≤ sup∑
n≥m

∣∣αb−rmc+dr∑nef(n)
∣∣

≤ sup∑
n≥m
|f(n)| .

It follows that g ∈ A(α,r)(Zkp, A), and Ser is continuous.
11



We can recover f from g using the relation

f(n) = αb−r
∑
nc(∆n1

e1
...∆nk

ek
g)(0) ,

where e1, ..., ek are the standard basis for Zkp. Since |f(n)| ≤ supδ∈(I∆)
∑
n ‖δg‖0, the

above relation induces a continuous map Coeff : A(α,r)(Zkp, A) → c(Zkp, A) that is

a left inverse of Ser. To see that Coeff is also a right inverse of Ser, observe that

(Ser ◦Coeff)(g) and g agree on Nk, which is dense in Zkp.

The map Ser induces an isomorphism Ser∗ : Lb(A(α,r)(Zkp, A), A)
∼−→ Lb(c(Nk, A), A).

The pairing c(Nk, A) × c(Nk, A) → A defined by (f, g) 7→
∑

n∈Nk f(n)g(n) identifies

c(Nk, A) with a submodule of Lb(c(Nk, A), A). For any φ ∈ Lb(C(Zkp, A), A), the func-

tion n 7→ φ
((

z
n

))
is bounded, so in particular αdr

∑
neφ
((

z
n

))
→ 0 as

∑
n → ∞.

Hence the image of Ser∗ is contained in c(Nk, A). Furthermore, the image contains all

elements of c(Nk, A) that are supported on a finite subset of Nk, and these elements

are dense in c(Nk, A). �

Lemma 3.2.3 makes it clear that for r′ < r, there are natural injections

D(α,r′)(Zkp, A) ↪→ Lb(A(α,r′)(Zkp, A), A) ↪→ D(α,r)(Zkp, A)

A(α,r)(Zkp, A) ↪→ Lb(D(α,r)(Zkp, A), A) ↪→ A(α,r′)(Zkp, A) .

3.3. Properties of locally analytic functions and distributions. In this section,

we check that A(α,r)(Zkp, A) has some properties that one would expect of locally

analytic functions.

Lemma 3.3.1. Multiplication induces a continuous map A(α,r)(Zkp, A)×A(α,r)(Zkp, A)→

A(α,r)(Zkp, A).
12



Proof. This follows Lemma 3.2.3 and the fact that for m,n ∈ N,
(
z
n

)(
z
m

)
is of the form∑m+n

i=0 ai
(
z
i

)
with ai ∈ Z. �

Lemma 3.3.2. Let

f : C(Zkp,Zp)→ C(Zjp,Zp)

be a homomorphism of Zp-modules. For any complete Tate ring A and any r, s ∈ R+,

there is at most one continuous A-linear homomorphism f̃ making the diagram

C(Zkp,Zp) C(Zkp, A) A(α,r)(Zkp, A)

C(Zjp,Zp) C(Zjp, A) A(α,s)(Zjp, A)

f f̃

commute, and there is at most one continuous A-linear homomorphism f̃ ∗ making

the diagram

HomZp(C(Zjp,Zp),Zp) Lb(C(Zjp, A), A) D(α,s)(Zjp, A)

HomZp(C(Zkp,Zp),Zp) Lb(C(Zkp, A), A) D(α,r)(Zkp, A)

f∗ f̃∗

commute. If either homomorphism exists, we say that it is induced by f .

Let A be a complete Tate ring, and let α ∈ A× be a topologically nilpotent unit.

There exists t0 ∈ R+ so that for any r, s ∈ R+ and any Zp-module homomorphism

f : C(Zkp,Zp)→ C(Zkp,Zp) that induces a continuous homomorphism

A(p,r)(Zkp,Qp)→ A(p,s)(Zjp,Qp) ,

f also induces continuous homomorphisms

A(α,rt)(Zkp, A)→ A(α,st)(Zjp, A)

D(α,st)(Zjp, A)→ D(α,rt)(Zkp, A)

for all t ∈ (0, t0).
13



Proof. We look at the matrix coefficients of f in the basis of Lemma 3.2.3. Write

f

((
z

n

))
=
∑
m∈Zjp

anm

(
z

m

)

with anm ∈ Zp. If the restriction A(α,rt)(Zkp, A) → A(α,st)(Zjp, A) exists, its matrix

must have entries αb(r
∑
n−s

∑
m)tcanm. Such a matrix defines a continuous map if and

only if the following two conditions are satisfied.

(1) αb(r
∑
n−s

∑
m)tcanm are bounded.

(2) For any fixed n, αb(r
∑
n−s

∑
m)tcanm → 0 as

∑
m→∞.

The terms with r
∑
n− s

∑
m ≥ 0 are certainly bounded, so we only need to worry

about terms with r
∑
n − s

∑
m < 0. There exists a positive integer ` so that

p`/α is power bounded. If the pb(r
∑
n−s

∑
m)t`canm are bounded (resp. go to zero as∑

m → ∞), then the same will be true of αb(r
∑
n−s

∑
m)tcanm. So we may take

t0 = `−1.

The map D(α,st)(Zjp, A) → D(α,rt)(Zkp, A) exists if and only if condition (1) above

and the following condition are satisfied.

(2′) For any fixed m, αb(r
∑
n−s

∑
m)tcanm → 0 as

∑
n→∞.

Since anm ∈ Zp and αbrt
∑
nc → 0 as

∑
n→∞, (2′) will always be satisfied. �

Proposition 3.3.3. Let g : Zjp → Zkp be a (globally) analytic function. For some

r0 ∈ R+ depending on α but not on g, j, k, composition with g induces continuous

A-linear homomorphisms

A(α,r)(Zkp, A)→ A(α,s)(Zjp, A)

D(α,s)(Zjp, A)→ D(α,r)(Zkp, A)

for all s < r < r0.
14



Proof. There are continuous maps

A(p,1/(p−1))(Zkp,Qp)→ LA0(Zkp,Qp)
g∗−→ LA0(Zjp,Qp)→ A(p,1/(p−1)−ε)(Zjp,Qp)

for any ε ∈ (0, 1/(p− 1)). Applying Lemma 3.3.2 then yields the desired result. �

If j = 1, then the maps exist even if r = s. We do not know if the same is true for

j > 1. Essentially, when j = 1, one can prove existence using norms on LA0 along

with the fact that vp(n!)−
∑k

i=1 vp(mi!) ≥ b(n−
∑
m)/pc. (The same idea will be used

in the proof of Proposition 3.3.4.) However, for j > 1,
∑j

i=1 vp(ni!) −
∑k

i=1 vp(mi!)

can be zero for arbitrarily large values of
∑
n−

∑
m.

Proposition 3.3.4. Let S be a set of coset representatives of Zkp/pZkp. The homeo-

morphism Zkp × S
∼−→ Zkp defined by (z, s) 7→ pz + s determines an isomorphism

C(Zkp, A) ∼= C(Zkp, A)⊕p
k

which induces isomorphisms

A(α,r)(Zkp, A) ∼= A(α,pr)(Zkp, A)⊕p
k

D(α,r)(Zkp, A) ∼= D(α,pr)(Zkp, A)⊕p
k

for all sufficiently small r ∈ R+.

Proof. We will again apply Lemma 3.3.2. As multiplication by p does not mix co-

ordinates, it is sufficient to check the case k = 1. It is then enough to check that

composition with the function

g(z) = pz
15



defines a continuous homomorphism

A(p,1/2p2)(Zp,Qp)→ A(p,1/2p)(Zp,Qp)

and that composition with the function

h(z) =


z/p, z ∈ pZp

0, z ∈ Z×p

defines a continuous homomorphism

A(p,1/2p)(Zp,Qp)→ A(p,1/2p2)(Zp,Qp) .

Define anm, bnm by

g

((
z

n

))
=

∞∑
m=0

anm

(
z

m

)
, h

((
z

n

))
=

∞∑
m=0

bnm

(
z

m

)
.

We just need to verify that:

(1) vp(anm)− m
2p

+ n
2p2 is bounded below for pm ≥ n.

(2) For any n, vp(anm)− m
2p

+ n
2p2 →∞ as m→∞.

(3) vp(bnm)− m
2p2 + n

2p
is bounded below for m ≥ pn.

(4) For any n, vp(bnm)− m
2p2 + n

2p
→∞ as m→∞.

Applying Lemma 3.1.2 gives

vp(anm)− vp(m!) ≥ −vp(bn/pc!) .

For n ≥ pm this implies

vp(anm) ≥
∞∑
i=1

(⌊
m/pi

⌋
−
⌊
n/pi+1

⌋)
≥
⌊
m/p− n/p2

⌋
.

16



Similarly, Lemma 3.1.2 implies

vp(bnm) ≥
∞∑
i=1

(⌊
m/pi+1

⌋
−
⌊
n/pi

⌋)
≥
⌊
m/p2 − n/p

⌋
.

�

Lemma 3.3.5. Any continuous homomorphism λ : Zkp → A× is in A(Zkp, A).

Proof. Lemma 3.3.1 allows us to reduce to the one-dimensional case, and Proposition

3.3.4 allows us to replace Zkp with an open sub-lattice. So it suffices to consider the

case where k = 1 and (λ(1)− 1)/α is topologically nilpotent. In that case, since

λ(z) =
∞∑
n=0

(
z

n

)
(λ(1)− 1)n,

λ ∈ A(α,1)(Zp, A). �

Lemma 3.3.6. For any 0 < s < r, the inclusions A(α,r)(Zkp, A) ↪→ A(α,s)(Zkp, A) and

D(α,s) ↪→ D(α,r)(Zkp, A) are completely continuous.

Proof. In the orthonormal bases of Lemma 3.2.3, these inclusions are represented by

diagonal matrices with diagonal entries of the form αbr
∑
nc−bs

∑
nc. As

∑
n → ∞,

the entries go to zero. �

3.4. Gluing. Propositions 3.3.3 and 3.3.4 show that it makes sense to define locally

analytic functions and distributions on arbitrary locally Qp-analytic manifolds by

gluing.

Definition 3.4.1. Let k be a nonnegative integer, and let X be a locally Qp-analytic

manifold of dimension k. Choose a decomposition X =
⊔
i∈I Xi for some index set I,

17



and choose an identification of each Xi with Zkp. We define

A(X,A) =
∏
i∈I

A(Xi, A)

Ac(X,A) =
⊕
i∈I

A(Xi, A)

D(X,A) =
⊕
i∈I

D(Xi, A)

Dc(X,A) =
∏
i∈I

D(Xi, A) .

By Propositions 3.3.3 and 3.3.4, the above definitions do not depend on the choice

of decomposition, and the functors U 7→ A(U,A) and U 7→ Dc(U,A) are sheaves on

X.

3.5. Geometric interpretation of distributions. Suppose that the Tate algebra

A 〈T1, ..., Tn〉 is sheafy for each nonnegative integer n. The modules of locally analytic

distributions have an alternative interpretation as rings of sections of adic spaces. This

interpretation will not be used elsewhere in the paper, but it gives further evidence

that our definition of distributions is reasonable.

Let D = Spa(ZpJZkpK,ZpJZkpK). Let A+ be an open and integrally closed subring of

A. Let Y = D ×Spa(Zp,Zp) Spa(A,A+). We can construct Y as follows. There is an

isomorphism ZpJT1, ..., TkK ∼= ZpJZkpK that sends Ti 7→ ∆ei , where the ei form a basis

of Zkp. For any positive rational r = m/n, let Br = A 〈T1, ..., Tk, T
n
1 /α

m, ..., T nk /α
m〉,

and let B+
r be the normal closure of A+ 〈T1, ..., Tn, T

n
1 /α

m, ..., T nn /α
m〉 in Br. Then Y

is formed by gluing the affinoids Yr := Spa(Br, B
+
r ).
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There are canonical isomorphisms

HomZp(C(Zkp,Zp),Zp) ∼= OD(D)

D(Zkp, A) ∼= OY (Y )

D(α,r)(Zkp, A) ∼= OY (Yr) ∀r ∈ Q+ .

4. Overconvergent cohomology

We mostly repeat the setup of [Urb11], except that we make use of the modules

defined in section 3.

4.1. Locally symmetric spaces. Let A (resp. Af , Ap
f ) be the ring of adeles (resp. fi-

nite adeles, finite adeles away from p) of Q.

Let G be a connected reductive algebraic group over Q. We will assume that G(Qp)

is quasisplit. Let B, T,N,N− be compatible choices of a Borel subgroup, maximal

torus, maximal unipotent subgroup, and opposite unipotent subgroup, respectively,

of G(Qp). Let I be an Iwahori subgroup of G(Qp) compatible with B. Then I admits

a factorization I = N0T0N
−
0 , where N−0 = N− ∩ I, T0 = T ∩ I, N0 = N ∩ I. Let

Kp be an open compact subgroup of Ap
f , and let K = KpI. Let G+

∞ be the identity

component of G(R), and let K∞ be a maximal compact modulo center subgroup of

G+
∞. Let ZG be the center of G.

The space

X := G(A)/KpG+
∞

may be considered as a locally Qp-analytic manifold. In section 3, we defined the

module Dc(X , A) of “locally analytic” compactly supported A-valued distributions

on X .
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Let A be a complete Tate Zp-algebra, and let λ : T0 → A× be a continuous

homomorphism. By Lemma 3.3.5, λ ∈ A(T0, A). We will assume that kerλ contains

ZG(Q)KpG+
∞ ∩ T0. We define Dc,λ(X , A) to be the quotient of Dc(X , A) obtained by

constraining right translation by N−0 to act by the identity, right translation by T0 to

act by λ, and translation by ZG(Q) to act by the identity.

The group G(Q)ad acts on Dc,λ(X , A) by left translation. Moreover, Dc,λ(X , A) is

a direct sum of modules induced from much smaller subgroups of G(Q)ad. We can

write G(A) as a finite union

G(A) =
⊔
i

G(Q)giG
+
∞K .

Let Γi be the image of giG
+
∞Kg

−1
i ∩G(Q) in G(Q)ad. Then

Dc,λ(X , A) ∼=
⊕
i

Ind
G(Q)ad

Γi
Dλ(giI, A)

where Dλ(giI, A) is the quotient of D(giI, A) obtained by constraining right transla-

tion by N−0 to act as the identity and right translation by T0 to act as λ.

The existence of the Iwahori factorization implies that the map N0 → giI given by

n 7→ gin induces an isomorphism of A-modules

D(N0, A)
∼−→ Dλ(giI, A) .

This identification induces a Γi-action on D(N0, A), which can be described as follows.

Any x ∈ I has an Iwahori factorization x = n(x)t(x)n−(x) with n(x) ∈ N0, t(x) ∈ T0,

n−(x) ∈ N−0 , and the functions n, t, and n− are analytic. The action of Γi on

D(N0, A) is given by

γ · [x] = λ(t(g−1
i γgix))[n(g−1

i γgix)]
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for γ ∈ Γi, x ∈ N0. Here [x] denotes the Dirac delta distribution supported at x.

Now consider the locally symmetric space

SG(K) := G(Q)\G(A)/K∞K .

Then SG(K) ∼=
⊔
i Yi where

Yi := Γi\G+
∞/K∞ .

We say that K is neat if all of the Γi are torsionfree. If that is the case, then each Yi

is a manifold with fundamental group Γi.

The manifold SG(K) has a Borel-Serre compactification SG(K), which is homotopy

equivalent to SG(K). Any finite triangulation of SG(K) determines a resolution

0→ Cd(Γi)→ ...→ C1(Γi)→ C0(Γi)→ Z→ 0

where the Cj(Γi) are free Z[Γi]-modules of finite rank and d is the dimension of SG(K).

We define a complex C•λ by

Cj
λ :=

⊕
i

HomΓi(Cj(Γi),Dλ(giI, A)).

Then

RΓ•(G(Q)ad,Dc,λ(X , A)) ∼=
⊕
i

RΓ•(Γi,Dλ(giI, A)) ∼= C•λ

in the derived category of A-modules.

4.2. Hecke action. We choose a projective resolution

...→ C1(G(Q)ad)→ C0(G(Q)ad)→ Z→ 0

of Z as a G(Q)ad-module as well as maps of complexes of Γi-modules C•(Γi) →

C•(G(Q)ad) and C•(G(Q)ad) → C•(Γi) that are homotopy inverses of each other.
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Then any f ∈ EndG(Q)ad(Dc,λ(X , A)) defines an operator [f ] ∈ End (C•λ) by

Cj
λ →

⊕
i

HomΓi(Cj(G(Q)ad),Dλ(giI, A))

∼−→HomG(Q)ad(Cj(G(Q)ad),Dc,λ(X , A))

f−→HomG(Q)ad(Cj(G(Q)ad),Dc,λ(X , A))

∼−→
⊕
i

HomΓi(Cj(G(Q)ad),Dλ(giI, A))

→Cj
λ .

For any f, g, [f ][g] is homotopy equivalent to [fg].

For any g ∈ G(Ap
f ), the double coset operator KpgKp acts on Dc,λ and determines

a Hecke operator [KpgKp] on C•λ.

Let

T− =
{
t ∈ T

∣∣t−1N−0 t ⊆ N−0
}
.

For t ∈ T−, the double coset operator N−0 tN
−
0 acts onDc,λ and determines an operator

[N−0 tN
−
0 ] on C•λ. We will sometimes denote this operator by ut.

Our definition of the Hecke operators at p differs slightly from that of previous

references on overconvergent cohomology, which made use of a choice of “right ∗-

action”. Our definition is instead meant to be analogous to the one used in Emerton’s

theory of completed cohomology [Eme06a, Eme06b]. The two approaches will yield

the same eigenvariety. The only essential difference between the approaches is that,

to define a “right ∗-action”, one chooses a splitting of 0→ T0 → T → T/T0 → 0, and

then uses this splitting to twist the Hecke operators so that T0 acts trivially.

Let S be the set of finite places at which Kp is not maximal hyperspecial. Let Ap,S
f

be the adeles away from p and S, and let Kp,S be the image of Kp in Ap,S
f . We define
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the Hecke algebra

HG := C∞c

(
Kp,S\G(Ap,S

f )/Kp,S ×N−0 \N−0 T−N−0 /N−0 ,Zp
)
.

4.3. Topological properties of Hecke operators. In order to apply the spectral

theory introduced in section 2.2, we will need to choose a particular description of C•λ

as a limit of complexes of projective modules. We define an abelian group structure

on N0 by (n, n′) 7→ exp(log(n) + log(n′)). This structure allows us to define the

projective modules D(α,r)(N0, A) for some arbitrarily chosen topologically nilpotent

unit α ∈ A. We define

Ci
λ,α,r :=

⊕
j

HomΓj(Ci(Γj),D(α,r)(N0, A)) .

Lemma 4.3.1. For all sufficiently small r and all ε > 0, the differential d : Ci+1
λ →

Ci
λ extends to a map Ci+1

λ,α,r → Ci
λ,α,r+ε.

Proof. It is enough to check that for sufficiently small r and all ε > 0, left translation

by any γ ∈ Γi maps D(α,r)(N0, A) into D(α,r+ε)(N0, A). This follows from the descrip-

tion of the action in section 4.1 along with Lemmas 3.3.1 and 3.3.5 and Proposition

3.3.3. �

If r = (r0, ..., rd) is chosen such that the differentials Ci+1
λ,α,ri+1

→ Ci
λ,α,ri

are defined,

then we denote the corresponding complex by C•λ,α,r.

Choose some t ∈ T− such that t−1N0t ⊂ Np
0 . Let H′G be the ideal of HG generated

by ut.

Lemma 4.3.2. There exists r0 ∈ R+ so that for all r ∈ (0, r0), ε ∈ R+, and f ∈

H′G, f determines a continuous map Ci
λ,α,r → Ci

λ,α,r/p+ε, and hence f determines a

completely continuous map Ci
λ,α,r → Ci

λ,α,r.
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Proof. We can show that Hecke operators away from p map Ci
λ,α,r into Ci

λ,α,r+ε using

essentially the same argument as in Lemma 4.3.1. It remains to show that ut maps

Ci
λ,α,r into Ci

λ,α,r/p+ε. The action of ut can be built from functions of the form

[x] 7→ λ(t(ι(x)))[n(ι(x))]

where ι(x) takes the form

ι(x) = ht−1n(n−x)t(n−x)t

for some n− ∈ N−0 , h ∈ I. (See for example [Eme06a, Lemma 4.2.19].) In particular,

n(ι(x)) belongs to a single right coset of t−1N0t ⊂ Np
0 . The argument proceeds as

before, except that we also need to use Proposition 3.3.4 and Lemma 3.3.6. �

4.4. Characteristic power series. For any f ∈ H′G we define the power series

det (1−Xf |C•λ) := det
(
1−Xf

∣∣C•λ,α,r)
for any α, r for which the complex C•λ,α,r is defined and the ut operator is completely

continuous. Choosing a different α and r conjugates the matrix of f by a diagonal

matrix, so the power series does not depend on them.

Similarly, we define det (1−Xf |Ci
λ) to be det

(
1−Xf

∣∣Ci
λ,α,r

)
. Consider the Fred-

holm series

P+(X) =
d∏
i=0

det
(
1−Xut

∣∣Ci
λ

)
.

Suppose that P+(X) factors asQ+(X)S+(X), withQ+(X) ∈ A[X], S+(X) ∈ A {{X}},

that Q+(X) and S+(X) are relatively prime, and that the leading coefficient of Q+(X)
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is invertible. Let Q∗+(X) = XdegQ+Q+(X−1). By [AIP, Théorème B.2], there is a de-

composition C•λ,α,r = N•α,r ⊕ F •α,r, where Q∗+(ut) annihilates N•α,r and acts invertibly

on F •α,r, and the N i
α,r are finitely generated and projective.

Lemma 4.4.1. For any α, α′ and r, r′ such that N•α,r and N•α′,r′ are defined, they are

canonically isomorphic.

Proof. Choose r′′ so that C•λ,α,r′′ injects into C•λ,α,r and C•λ,α′,r′ . The operator 1−Q∗+(ut)

Q∗+(0)

acts as the identity on N•α,r, and for sufficiently large n,
(

1− Q∗+(ut)

Q∗+(0)

)n
factors through

N•α,r′′ . So we get a canonical isomorphism N•α,r
∼= N•α,r′′ , and similarly there is a

canonical isomorphism N•α′,r′
∼= N•α,r′′ . �

Corollary 4.4.2. There is a decomposition C•λ = N•⊕F •, where Q∗+(ut) annihilates

N• and acts invertibly on F •, and the N i are finitely generated and projective.

5. Eisenstein and cuspidal contributions to characteristic power

series

5.1. Preliminaries. In this section, we will write C•G,Kp,λ for C•λ to make it clear

which group we are considering. We will also assume that G(R) has discrete series,

since otherwise Urban’s eigenvariety will be empty.

In order to construct Urban’s eigenvariety, we need the characteristic power series of

the Hecke operators to be Fredholm series. However, the power series det
(
1−Xf

∣∣C•G,Kp,λ

)
includes contributions from both cusp forms and Eisenstein series, and the Eisenstein

contribution is generally only a ratio of Fredholm series. We will now define a complex

C•G,Kp,λ,cusp whose characteristic power series only includes contributions from cusp

forms. (This complex will only be useful for defining characteristic power series; we

make no attempt to remove the Eisenstein series from the cohomology.)
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We will mostly follow [Urb11, §4.6]. However, there is an error in the handling of the

Eisenstein series in [Urb11] that we will need to correct. The region of convergence

of an Eisenstein series is generally not a union of Weyl chambers. (For example,

Sp(6) has two conjugacy classes of parabolic subgroups whose Levis are isomorphic

to GL(2)×GL(1). The region of convergence of Eisenstein series coming from these

parabolics contains one or two full Weyl chambers and fractions of three others.)

Consequently, the set WM
Eis defined in [Urb11] should depend on the weight of the

Eisenstein series. A more careful argument is therefore needed to show that character

distribution IclG,0(f, µ) has a unique p-adic interpolation. In fact, it appears that the

character distribution of Eisenstein series coming from a single parabolic subgroup

will generally not have a unique interpolation. We will show, however, that the sum

of distributions coming from parabolic subgroups that have a common Levi will have

a unique interpolation.

We let WG denote the Weyl group of G. We let ΦG, Φ∨G denote the set of roots

and coroots, respectively, of the pair (GQp , T ), where T is the torus chosen in section

4. We let Φ+
G (resp. Φ−G) denote the subset of roots that are positive (resp. negative)

with respect to B, and we make a similar definition for coroots. We let ρ denote half

the sum of the positive roots.

Let F be a finite extension of Qp. We say that µ : T0 → F× is an algebraic weight

if it can be extended to a homomorphism of algebraic groups TF → (Gm)F . We say

that an algebraic weight µ is dominant (resp. regular dominant) if 〈α∨, µ〉 ≥ 0 (resp.

> 0) for all α∨ ∈ Φ∨+
G .

Suppose that µ is dominant. Then Dµ(giI, F ) has a (nonzero) quotient that is

a finite-dimensional F -vector space. We will write LGµ for the corresponding local

system on either SG(K) or SG(K).
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Lemma 5.1.1. Let f = ut⊗ fp ∈ H′G, and let µ : T0 → F× be an algebraic dominant

weight. Then

det
(
1−Xf |C•G,Kp,µ

)
≡ det

(
1−Xf |H•(SG(K), LGµ )

)
(mod OF JN(µ, t)XK)

where

N(µ, t) = inf
w∈WG\{id}

|t(w−1)(µ+ρ)|p .

Proof. For the degree 1 term, this is [Urb11, Lemma 4.5.2]. The argument used there

also works for higher degree terms. �

In section 7, we will consider a family of weights having the property that for

any n ∈ N, the set of points corresponding to regular dominant weights µ satisfying

pn | N(µ, t) is Zariski dense. The characteristic power series for the whole family can

then be determined from the det(1−Xf |H•(SG(K), LGµ )).

If µ is regular dominant, then the cuspidal subspace of H i(SG(K), LGµ ) is the interior

cohomology H i
! (SG(K), LGµ ) [LS04, §5.3], and furthermore (since we assume G(R) has

discrete series) the interior cohomology is nonzero only in the middle degree [BW00,

Theorem III.5.1]. Hence either det(1 − Xf |H•! (SG(K), LGµ )) or its reciprocal is a

polynomial.

Our goal is to prove a version of Lemma 5.1.1 in which C•G,Kp,µ is replaced by a com-

plex C•G,Kp,µ,cusp that we will define, andH•(SG(K), LGµ ) is replaced byH•! (SG(K), LGµ ).

5.2. Cohomology of the Borel-Serre boundary. Eisenstein series arise from the

Borel-Serre boundary ∂SG(K) := SG(K) \ SG(K) of SG(K). The boundary has a

stratification by locally symmetric spaces of parabolic subgroups of G.

We warn the reader that the Borel-Serre compactification of SG(K) slightly strange.

When constructing a locally symmetric space, one usually takes a quotient by the

identity component of either ZG(R) or AG(R), where AG is the Q-split part of ZG. In
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order to construct Urban’s eigenvariety, we need to choose the former option, but the

Borel-Serre compactification behaves better with respect to the latter. Consequently,

if M is a Levi subgroup of G, then the locally symmetric space for M should be

constructed by taking a quotient by the identity component of ZG(R)AM(R) rather

than that of ZM(R). However, it will turn out that we only need to consider Levi

subgroups for which the two quotients are the same; see section 5.4 for more details.

Let P be a parabolic subgroup of G, let N be the maximal unipotent subgroup of

P , and let M = P/N be its Levi quotient. Let Kp
P = Kp ∩P (Ap

f ), KP,p = I ∩P (Qp),

KP = Kp
PKP,p. We can define a locally symmetric space SP (KP ), and there is a

locally closed immersion

ι : SP (KP )→ SG(K) .

If P ′ is another parabolic subgroup of G, then SP (KP ) and SP ′(KP ′) will have the

same image in SG(K) if and only if P (Af ) and P ′(Af ) are conjugate by an element

of KpI.

Let Kp
M , IM be the images of Kp

P , KP,p in M(Ap
f ), M(Qp), respectively. The group

IM is an Iwahori subgroup of M . Let KM = IMK
p
M . The locally symmetric space

SP (KP ) is a nilmanifold bundle over SM(KM). We let

π : SP (KP )→ SM(KM)

denote the projection.

We can relate Rπ∗ι
∗LGµ to local systems on SM(KM) using the Kostant decompo-

sition [BW00, Theorem III.3.1]. To define the local systems on SM(KM), we first

need to choose a quasisplit torus TM of M . Since G(Qp) = P (Qp)I, we can choose

i ∈ I so that iT i−1 ⊂ PQp . We let TM be the image of iT i−1 in M . We let w ∈ WG

be the minimal length element satisfying iw(BQ̄p)w
−1i−1 ⊂ PQ̄p . The isomorphism
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T
∼−→ TM defined by t 7→ iwtw−1i−1 determines a length-preserving injection of Weyl

groups WM ↪→ WG. We let WM denote a set of minimal length coset representatives

of WM\WG.

We have the following isomorphism in the derived category of constructible sheaves

on SM(KM).

(5.2.1) Rπ∗ι
∗LGµ
∼=

⊕
w′∈WM

LMw−1(w′(µ+ρ)−ρ)[l(w
′)− dimN ]

Here l(w′) denotes the length of w′. To see that the splitting exists in the derived

category and not just at the level of cohomology, we observe that the LMw−1(w′(µ+ρ)−ρ)

have distinct central characters.

5.3. Hecke action. We will now define an action of HG on the cohomology of

SM(KM) by constructing a homomorphism HG → HM . The map Rπ∗ι
∗ will be

equivariant for this action.

As explained in [Urb11, Corollary 4.6.3], for any summand of (5.2.1) with w 6= w′,

the Hecke eigenvalues of ut ∈ H′G acting on the cohomology of this summand will be

divisible by N(µ, t). We therefore only need to consider the summand with w = w′.

(In fact we should ignore the other summands, because the corresponding Eisenstein

series are p-adic limits of cusp forms.) We are therefore only interested in the local

system

LMw−1(w(µ+ρ)−ρ) = LMµ+(1−w−1)ρ .

Our definition of the homomorphism HG → HM will be the same as that of [Urb11,

4.1.8], except that our convention for the Hecke operators makes some normalization

factors disappear. The Hecke algebra HG is generated by operators of the form ut for

t ∈ T− and [KvgKv] for v /∈ S, g ∈ G(Qv). We let ut ∈ HG act as t(1−w
−1)ρut ∈ HM .
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The double coset KvgKv decomposes as a finite union
⊔
jKvpjKv with pj ∈ P (Qv).

We let [KvgKv] act as
∑

j[KM,vmjKM,v], where mj is the image of pj in M(Qv).

Lemma 5.3.1. The homomorphism HG → HM defined above makes the map

Rπ∗ι
∗ : H•(SG(K), LGµ )→ H•(SM(KM), LMµ+(1−w−1)ρ)[l(w)− dimN ]

HG-equivariant.

Proof. The argument is essentially the same as that of [Urb11, 4.1.8, 4.6.1–3]. �

5.4. Image of the map Rπ∗ι
∗. To simplify some of the analysis that follows, we

will observe that some Levis have H•(SM(KM), LMµ ) = 0 for a Zariski dense subset

of weights µ, and hence they cannot contribute to the characteristic power series.

The Levi M can have a nonzero contribution only if the following conditions hold

(see [Urb11, Theorem 4.7.3(ii)′]):

(1) M(R) has discrete series.

(2) The center ZM of M is generated by its maximal split subgroup, its maximal

compact subgroup, and ZG.

Let T ′M be a maximally compact maximal torus of M . Any choice of embed-

ding Q̄→ C determines an action of complex conjugation on the cocharacter lattice

X∗(T
′
M/ZG). Choosing an identification of X∗(TM/ZG) with X∗(T

′
M/ZG) gives an

involution

θ : X∗(TM/ZG)→ X∗(TM/ZG)

The two assumptions listed above guarantee that θ is actually independent of all

choices. More specifically, the first assumption guarantees that T ′M/ZM is compact

and therefore the induced map X∗(T
′
M/ZM)→ X∗(T

′
M/ZM) is minus the identity. The
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second assumption guarantees that the induced map X∗(ZM/ZG) → X∗(ZM/ZG) is

independent of the embedding Q̄→ C.

By [LS04, §3.2], the image of

Rπ∗ι
∗ : H•(SG(K), LGµ )→ H•(SM(KM), LMµ+(1−w−1)ρ)[l(w)− dimN ]

can have nonzero intersection with the cuspidal part

H•! (SM(KM), LMµ+(1−w−1)ρ)[l(w)− dimN ]

only if

(5.4.1) 〈α∨, w(1 + θ)(µ+ ρ))〉 < 0 ∀α∨ ∈ Φ∨+
G \ Φ∨+

M .

If the above equation holds and no Eisenstein series arising from M has a pole at

−w(µ + ρ), then the image contains the cuspidal part. In particular, the image

contains the cuspidal part if (5.4.1) is satisfied and

(5.4.2) |〈α∨, (1 + θ)µ〉| ≥ 4| 〈α∨, ρ〉 | ∀α∨ ∈ Φ∨G \ Φ∨M .

The constraint (5.4.1) is archimedean in nature, and therefore appears to provide

an obstacle to interpolating Eisenstein series p-adically. To get around this issue, we

will combine contributions from parabolic subgroups having common Levis.

We will call a Levi subgroup “relevant” if it satisfies the two conditions listed at the

beginning of this section, and we will call a parabolic subgroup relevant if its Levi is

relevant. Let P0 be the set of relevant parabolic subgroups of G, modulo the relation

that P1 and P2 are considered equivalent if P1(Af ) and P2(Af ) are conjugate by an

element of KpI. Let P be the set of relevant parabolic subgroups of G, modulo the

relation that P1 and P2 are considered equivalent if P1(Qp) and P2(Qp) are conjugate
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by an element of I. Let M be the set of relevant Levi subgroups of G, modulo

the relation that M1 and M2 are considered equivalent if M1(Qp) and M2(Qp) are

conjugate by an element of I. There are surjections P0 → P →M.

Choose representatives of each element of P0 and M. If P is the representative of

an element of P0 and M is the representative of its image in M, choose a g ∈ G(Q)

so that M ⊂ gPg−1 and the image of g in G(Qp) is in I. This choice determines an

identification of M with the Levi quotient of P . We will sometimes identify elements

of P0 and M with the chosen representatives.

Let M ∈M. Assume µ is chosen so that (5.4.2) is satisfied. Then there is exactly

one parabolic subgroup Pµ containing M for which (5.4.1) will be satisfied: it is the

parabolic determined by the set of coroots α∨ satisfying

〈α∨, (1 + θ)µ〉 < 0 .

So µ determines a section M→ P of the projection P → M. Let Pµ be the image

of this section, and let P0,µ be the preimage of Pµ in P0. At the end of section 5.2,

we associated each parabolic subgroup of G with an element of WG; this association

determines a map w : P → WG.

Lemma 5.4.3.

l(w(Pµ)) =
1

2

∣∣(Φ−G \ Φ−M) ∩ θ(Φ+
G \ Φ+

M)
∣∣

(1− θ)(1− w(Pµ)−1)ρ =
∑

α∈(Φ−G\Φ
−
M )∩θ(Φ+

G\Φ
+
M )

α

In particular, l(w(Pµ)) and (1− θ)(1− w(Pµ)−1)ρ do not depend on µ.

Proof. By definition,

l(w(Pµ)) = |{α ∈ ΦG \ ΦM | 〈α∨, (1 + θ)µ〉 > 0, 〈α∨, µ〉 < 0}|
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Observe that if 〈α∨, µ〉 < 0 < 〈α∨, θµ〉, then exactly one of the inequalities

〈α∨, µ〉 < 0 < 〈α∨, (1 + θ)µ〉 , 〈(−α∨θ), µ〉 < 0 < 〈(−α∨θ), (1 + θ)µ〉

will be satisfied, and otherwise neither will be satisfied. This observation also proves

the second item. �

We will write l(M) for l(w(Pµ)) and ρ(M,µ) for (1− w(Pµ)−1)ρ.

Now we are almost ready to write down an analogue of Lemma 5.1.1 for cusp

forms. The boundary components of SG(K) whose Eisenstein series contribute to

the characteristic power series det(1 − Xf |H•(SG(K), LGµ )) mod OF JN(µ, t)XK are

in bijection with elements of P0,µ. Given M ∈ M, a choice of a preimage P of M

in P0,µ determines an open compact subgroup Kp
M of M(Ap

f ), as described in section

5.2. Let KpM be the collection of all such subgroups.

The analysis of the last few sections gives us the following identity.

Lemma 5.4.4. For any dominant algebraic weight µ : T → F× satisfying (5.4.2),

det(1−Xf |H•(SG(K), LGµ ))

det(1−Xf |H•! (SG(K), LGµ ))

≡
∏
M∈M

∏
KM∈KpM,µ

det(1−Xf |H•! (SM(KM), LMµ+ρ(M,µ)))
(−1)dimN−l(M)

(mod OF JN(µ, t)XK)

In order to interpolate the local systems p-adically, we need something slightly

more general.
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Proposition 5.4.5. For any dominant algebraic weights µ : T → F× and µ0 : T →

F×0 satisfying (5.4.2),

det(1−Xf |H•(SG(K), LGµ ))

det(1−Xf |H•! (SG(K), LGµ ))

≡
∏
M∈M

∏
KM∈KM,µ0

det(1−Xf |H•! (SM(KM), LMµ+ρ(M,µ0)))
(−1)dimN−l(M)

(mod OF JN(µ, t)XK)

Proof. We claim that local systems LMµ+ρ(M,µ), L
M
µ+ρ(M,µ0) are isomorphic. The isomor-

phism class of each local system depends only the restriction of the weight to Mder.

The operator 1−θ
2

acts as the identity on the character lattice of Mder, so the claim

follows from Lemma 5.4.3. Furthermore, the isomorphism of local systems induces an

HG-equivariant isomorphism on cohomology. (The isomorphism on cohomology is not

HM -equivariant—the actions of ut differ by a factor of tρ(M,µ)−ρ(M,µ0). However, the

two homomorphisms HG → HM also differ by the same factor, and so the differences

cancel each other.)

It remains to explain why can replace KM,µ with KM,µ0 . Essentially, we need to

show that if π = π∞ ⊗ πp ⊗ πpf is an automorphic representation of M , then

∑
Kp
M∈K

p
M,µ

tr(1Kp
M
|πpf ) = tr(1Kp | Ind

G(Apf )

Pµ(Apf )
πpf )

is independent of µ. By [BZ77, 2.9–2.10], for any place v, the composition series of

the local factor of Ind
G(Af )

Pµ(Af ) π
p
f at v is independent of µ. It follows that the trace of

1Kp does not depend on µ. �

5.5. The complex C•G,Kp,λ,cusp. Now we fix an algebraic dominant weight µ0, and

let λ : T → A× be any weight. We define C•G,Kp,λ,cusp inductively, assuming that
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analogous complexes have already been defined for M ∈M.

C•G,Kp,λ,cusp := C•G,Kp,λ ⊕
⊕
M∈M

⊕
Kp
M∈K

p
M,µ0

C•M,Kp
M ,λ+ρ(M,µ0),cusp[l(M)− dimN − 1]

Proposition 5.5.1. Let F be a finite extension of Qp, let µ : T → F× be an algebraic

dominant weight, and let f = ut ⊗ fp ∈ H′G. If µ is sufficiently general, then

det(1−Xf |C•G,Kp,µ,cusp) ≡ det(1−Xf |H•! (SG(K), LGµ )) (mod OF JN(µ, t)XK) .

Proof. By induction, we may assume that the proposition holds for all Levi subgroups

of G.

det(1−Xf |C•G,Kp,µ,cusp)

≡ det(1−Xf |H•(SG(K), LGµ ))
∏
M,KM

det(1−Xf |H•! (SM(KM), LMµ+ρ(M,µ0)))
(−1)l(M)−dimN+1

≡ det(1−Xf |H•! (SG(K), LGµ )) (mod OF JN(µ, t)XK)

where we used the induction hypothesis and Lemma 5.1.1 in the second line and

Proposition 5.4.5 in the third line. We also use the fact that ρ(M,µ0) is M -dominant,

and so OF JN(µ+ ρ(M,µ0), t)XK ⊆ OF JN(µ, t)XK. �

The analysis of section 4.4 applies equally well to C•G,Kp,λ,cusp. For any f ∈ H′G, we

may define a Fredholm series det
(
1−Xf

∣∣C•G,Kp,λ,cusp

)
. If P+(X) =

∏
i det

(
1−Xf

∣∣Ci
G,Kp,λ,cusp

)
has a factorization P+ = Q+S+ with Q+ a polynomial with invertible leading coeffi-

cient, then this factorization induces a decomposition C•G,Kp,λ,cusp = N• ⊕ F •.

6. Theory of determinants

In order to construct the pieces of the eigenvariety, we will make use of the theory of

determinants. We will recall some basic definitions from [Che14] and prove a lemma

concerning the ratio of two determinants.
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Definition 6.1. Let A be commutative ring, and let R be an A-module. An A-valued

polynomial law on R is a rule that assigns to any commutative A-algebra B a map

of sets DB : R ⊗A B → B that is functorial in the sense that for any A-algebra

homomorphism f : B → B′,

DB′ ◦ (idR⊗f) = f ◦DB .

Let d be a nonnegative integer. We say that a polynomial law D is homogeneous

of degree d if

DB(br) = bdDB(r) ∀B , b ∈ B, r ∈ R⊗A B .

Now assume that R is an A-algebra. We say that a polynomial law D is multiplica-

tive if

DB(1) = 1, DB(rr′) = DB(r)DB(r′) ∀B , r, r′ ∈ R⊗B .

We say that a polynomial lawD is a determinant of dimension d if it is homogeneous

of degree d and multiplicative.

Let M be an R-module that is projective of rank d as an A-module. Then the rule

that sends r ∈ R⊗A B to det(r|M ⊗A B) is a determinant of dimension d.

Lemma 6.2 ( [Rob63, Proposition I.1]). Let A be a commutative ring, and let R be an

A-module. Let D be an A-valued polynomial law on R that is homogeneous of degree

d, let n be a positive integer, and let r1, ..., rn ∈ R. Then DA[X1,...,Xn](X1r1+...+Xnrn)

is a homogeneous polynomial of degree d in X1, ..., Xn.

Lemma 6.3. Let A be a commutative ring, let R be an A-algebra, and let D+, D−

be A-valued determinants on R of dimension d+, d−, respectively, with d+ ≥ d−.

Let d = d+ − d−. There is at most one determinant D of dimension d satisfying

D+
B(r) = D−B(r)DB(r) for all A-algebras B and all r ∈ R⊗A B.
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The following are equivalent:

(1) There exists a determinant D satisfying the above condition.

(2) For any commutative A-algebra B and r ∈ R⊗A B,

D+
BJXK(1 +Xr)/D−BJXK(1 +Xr)

is a polynomial of degree at most d in X.

(3) For any positive integer n and r1, ..., rn ∈ R,

D+
AJX1,...,XnK(1 +X1r1 + ...+Xnrn)/D−AJX1,...,XnK(1 +X1r1 + ...+Xnrn)

is a polynomial of total degree at most d in X1, ..., Xn.

Proof. If D−B(r) is a unit, then we we will define FB(r) := D+
B(r)/D−B(r).

If D is a determinant satisfying the conditions of the lemma, then FBJXK(1+Xr) =

DBJXK(1 +Xr) for all B, r ∈ R⊗A B. Furthermore, DB(r) must be the coefficient of

Xd in DBJXK(1 + Xr), since functoriality implies that both of these quantities must

equal the coefficient of Xd in DB[X,Y ](Y + Xr). So D is uniquely determined if it

exists.

Lemma 6.2 proves (1)⇒ (3), and (3)⇒ (2) follows from functoriality.

Now we will show that (2) ⇒ (1). Assume that condition (2) holds. We define

DB(r) be the coefficient of Xd in FBJXK(1+Xr). We know that D+
BJXK(1+Xr) (resp.

D−BJXK(1 + Xr), FBJXK(1 + Xr)) is a polynomial of degree at most d+ (resp. d−,

d) and the coefficient of Xd+ (resp. Xd− , Xd) is D+
B(r) (resp. D−B(r), DB(r)). So

D+
B(r) = D−B(r)DB(r).

It remains to show that D is a determinant. Since D+, D− are functorial, D is as

well. To show that D is homogeneous of degree d, we observe that the map X 7→ bX

multiplies the coefficient of Xd in FBJXK(1 +Xr) by bd.
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Finally, we check that D is multiplicative. We have FBJXK(1 + X) = (1 + X)d,

so DB(1) = 1. Observe that D(r1r2) is the coefficient of (X1X2)d in DB[X1,X2](1 +

X1X2r1r2), while D(r1)D(r2) is the coefficient of (X1X2)d in DB[X1,X2](1 + X1r1 +

X2r2 +X1X2r1r2). The equality of these coefficients follows from Lemma 6.2 applied

to 1, r1, r2, r1r2. �

Definition 6.4. Let D be an A-valued determinant on R. We denote by ker(D) the

set of r ∈ R such that for all B and all r′ ∈ B ⊗A R, DB(1 + r′r) = 1.

7. Construction of the eigenvariety

7.1. Weight space and Fredholm series. Now we return to the setup of sections

4–5. We continue to assume that G(R) has discrete series. Let T ′ be the quotient of

T0 by the closure of ZG(Q)G+
∞K

p ∩ T0. We define the weight space

W := Spa(ZpJT ′K,ZpJT ′K)an

Let U = Spa(A,A+) be an open affinoid subset of W with A a complete Tate ring.

Let λ : T0 → A× be the tautological character induced by the map T0 → T ′ → ZpJT ′K.

For any f ∈ H′G ⊗Zp A, let

Pf (X) := det
(
1−Xf

∣∣C•G,Kp,λ,cusp

)(−1)d/2
.

Note that d = dimSG(K) is even since G(R) has discrete series. If V is an open

subspace of W , and f ∈ H′G ⊗Zp OW(V), then we can define Pf (X) by gluing.

Definition 7.1.1. Let V be an open subspace of W . A series f ∈ OW(V)JXK is

called a Fredholm series if it is the power series expansion of some global section of

V × A1 and its leading coefficient is 1.
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This definition agrees with Definition 2.2.1 if V = Spa(A,A+) with A a complete

Tate ring.

Proposition 7.1.2. For f ∈ H′G, the series Pf (X) ∈ OW(W)JXK is a Fredholm

series.

Proof. It suffices to check that the restriction of Pf to each irreducible component V

ofW is a Fredholm series. The ring OV(V) = O+
V (V) is just the completed group ring

of the torsionfree part of T ′. In particular, this ring is adic, and its topology is induced

by any norm corresponding to a Gauss point of V . So it suffices to check that the

restriction of Pf (X) to some Gauss point of V is a Fredholm series. The Gauss points

are characteristic zero points, so we may apply the argument of [Urb11, Theorem

4.7.3iii] along with Proposition 5.5.1. �

We will write P (X) for Put(X). We define the spectral variety Z ⊂ W × A1 to

be the zero locus of P (X), and we define w : Z → W to be the projection. We also

define

P+(X) :=
∏
i

det
(
1−Xut

∣∣Ci
G,Kp,λ,cusp

)
.

7.2. Pieces of the eigenvariety. Now we construct the individual pieces of the

eigenvariety. Let z ∈ Z. By [AIP, Corollaire B.1], there exists an open affinoid

neighborhood U = Spa(A,A+) of w(z) and a factorization P+(X) = Q+(X)S+(X),

with Q+(X) ∈ A[X], S+(X) ∈ A {{X}}, such that Q+(X) and S+(X) are relatively

prime, Q+ vanishes at x, and the leading coefficient of Q+ is invertible. The factoriza-

tion of P+ induces a factorization P (X) = Q(X)S(X) satisfying similar properties.

The factorization also determines a sub-complex N• of C•G,Kp,λ,cusp, as described in

sections 4.4 and 5.5.
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Proposition 7.2.1. Let D+ be the determinant associated with the action of HG⊗ZpA

on
⊕

i≡d/2(2)N
i, and let D− be the determinant associated with the action of HG⊗ZpA

on
⊕

i≡d/2+1(2)N
i. Then there exists a determinant D so that D+ = DD−.

Proof. Let R = HG ⊗Zp A. As before, if B is an A-algebra and r ∈ R ⊗A B has the

property that D−B(r) is invertible, we write FB(r) for the ratio D+
B(r)/D−B(r).

First, we will show that for any r ∈ R, the polynomial D−A[X](1 + Xr) divides the

polynomial D+
A[X](1+Xr). It suffices to check that this holds at a Zariski dense subset

of points of U . By [Urb11, Lemma 4.1.12 and Theorem 4.7.3iii], it holds at all rigid

analytic points. So D−A[X](1 + Xr) divides D+
A[X](1 + Xr), and hence FAJXK(1 + Xr)

must be a polynomial.

For any z ∈ Zp, FAJXK(1 + X(r + z)) is a polynomial. Let d+ and d− be the

dimensions of D+ and D−, respectively, and let d = d+ − d−. For almost all z,

D−AJXK(1 +X(r+ z)) has degree d−; choose one such z. Then FAJXK(1 +X(r+ z)) has

degree at most d. So FAJXK(1 +Xr) = (1−Xz)dFAJXK(1 +X(1−Xz)−1(r + z)) has

degree at most d as well.

Next, we observe that, since FAJXK(1+X(z1r1 +...+znrn)) is a polynomial of degree

at most d for all z1, ..., zn ∈ Zp, r1, ..., rn ∈ R, FAJX1,...,XnK(1 +X1r1 + ..+Xnrn) must

be a polynomial of total degree at most d. Then we may apply Lemma 6.3. �

We let hU ,Q+ = (HG ⊗Zp A)/ ker(D). Since ker(D) contains any operator that an-

nihilates N•, hU ,Q+ must be finitely generated as an A-module. We use the extension

hU ,Q+ → A to construct an adic space EU ,Q+ over U as follows. We give hU ,Q+ the

“A-module topology” defined in [Hub94, Section 2], and we let h+
U,Q be the normal

closure of A+ in hU,Q. We define EU ,Q+ = Spa(hU ,Q+ , h
+
U ,Q+

).
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Since Q∗(X) is the characteristic polynomial of u acting on N•, it follows from

[Che14, Lemma 1.12iv] that Q∗(u) is in ker(D), and so there is a canonical map

EU ,Q+ → Z.

7.3. Gluing. We will glue the EU ,Q+ as in [Buz07, Section 5]. We need the following

lemma to verify that the pieces can be glued.

Lemma 7.3.1. If U ′ ⊂ U , then there is a canonical isomorphism EU ′,Q+
∼= EU ,Q+ ×U

U ′.

Proof. The restriction map OW(U)→ OW(U ′) is étale by [Hub96, Proposition 1.6.7i

and Corollary 1.7.3iii]. By [Ryd08, Theorem I.2.3.2], hU ′,Q+
∼= hU ,Q+ ⊗OW (U)OW(U ′).

Since hU ,Q+ is finite over OW(U ′), it follows that EU ′,Q+
∼= EU ,Q+ ×U U ′. �

One can also show, using essentially the same proof as [Urb11, Proposition 5.3.5],

that if Q+ and Q′+ are relatively prime, then there is a canonical isomorphism

EU ,Q+Q′+
∼= EU ,Q+ t EU ,Q′+ .

Theorem 7.3.2. The EU ,Q+ can be glued to form an adic space E. Furthermore, E is

equidimensional in the sense of [Hub96, Definition 1.8.1] and the morphism E → Z

is finite and surjective.

Proof. To show that the morphism E → Z is finite, we observe that Z can be covered

by open sets whose preimage in E is contained in some EU ,Q+ . The finiteness of the

morphism E → Z then follows from the finiteness of the maps EU ,Q+ → U .

Now we check that the morphism is surjective. Let z ∈ Z, and let k be the residue

field of z. Observe that SpecHG → SpecZp[ut] is surjective, so HG ⊗Zp[ut] k cannot

be the zero ring. The image of ker(D) in HG ⊗Zp[ut] k is contained in the kernel of

the base change of D to HG ⊗Zp[ut] k. Therefore the image of ker(D) cannot be the

unit ideal, and so there must be a point of E lying above z.
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Finally, we show that E is equidimensional. The characteristic zero locus ofW can

be covered by open affinoids U = Spa(A,A+) with A an integral domain. Then for

any Q, hU ,Q will be a torsionfree A-module, so the portion of E lying over U will be

equidimensional. For any affinoid U = Spa(A,A+) ⊂ X, p is not a zero divisor in A,

so E cannot have any components that consist solely of characteristic p points. �
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