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Abstract

The Statistical Dynamics of Nonequilibrium Control

by

Grant Murray Rotskoff

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Phillip L. Geissler, Chair

Living systems, even at the scale of single molecules, are constantly adapting to changing
environmental conditions. The physical response of a nanoscale system to external gradients
or changing thermodynamic conditions can be chaotic, nonlinear, and hence difficult to
control or predict. Nevertheless, biology has evolved systems that reliably carry out the
cell’s vital functions efficiently enough to ensure survival. Moreover, the development of new
experimental techniques to monitor and manipulate single biological molecules has provided a
natural testbed for theoretical investigations of nonequilibrium dynamics. This work focuses
on developing paradigms for both understanding the principles of nonequilibrium dynamics
and also for controlling such systems in the presence of thermal fluctuations.

Throughout this work, I rely on a perspective based on two central ideas in nonequi-
librium statistical mechanics: large deviation theory, which provides a formalism akin to
thermodynamics for nonequilibrium systems, and the fluctuation theorems which identify
time symmetry breaking with entropy production. I use the tools of large deviation the-
ory to explore concepts like efficiency and optimal coarse-graining in microscopic dynamical
systems. The results point to the extreme importance of rare events in nonequilibrium dy-
namics. In the context of rare dynamical events, I outline a formal approach to predict
efficient control protocols for nonequilibrium systems and develop computational tools to
solve the resulting high dimensional optimization problems. The final chapters of this work
focus on applications to self-assembly dynamics. I show that the yield of desired structures
can be enhanced by driving a system away from equilibrium, using analysis inspired by
the theory of the hydrophobic effect. Finally, I demonstrate that nanoscale, protein shells
can be modeled and controlled to robustly produce monodisperse, nonequilibrium structures
strikingly similar to the microcompartments observed in a variety of bacteria.
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Chapter 1

The exceptional importance of rare
events

The complexity of biophysical dynamics leads to a fascinating, but unmanageably diverse
array of physical phenomena. While we have documented a vast collection of perplexing
systems and behaviors that inspire further study, physicists are equipped with few, if any,
universal guiding principles for biophysical systems. The curious importance of rare events is
one of the few unifying themes that has emerged from our still-developing understanding of
equilibrium dynamics in condensed matter systems. A careful assessment of rare behavior has
influenced our theoretical understanding of much chemical physics: reaction rates, binding
events, dynamical phase transitions, self-assembly processes, among many other topics. Rare
does not mean unimportant. Events that occur extremely frequently from our perspective
can be unimaginably rare relative to the timescales of typical molecular fluctuations. For
example, the relaxation of a protein on the microsecond to second timescale can feature
dramatic transitions between long-lived configurations, roughly 1012 times slower than its
typical thermal motion. Studying events that span large scales in time and space requires
resolution at all scales, a demand that has thwarted efforts to develop simple, general theories
of protein folding. In the case of biophysical and chemical dynamics, we currently lack a
systematic and tractable approach for analyzing the confluence of timescales implicated in
many important phenomena. Even so, large deviations away from the average behavior
encompass some of the most intricate and important processes in condensed matter physics.

Theoretical work on biophysical systems has largely focused on equilibrium dynamics.
Protein folding and conformational heterogeneity, as prime examples, have been extensively
studied using equilibrium molecular dynamics simulations and free energy calculations. Tech-
niques for sampling rare events have aided these computational and theoretical studies im-
measurably. The tools of the trade for equilibrium statistical mechanics, despite their man-
ifold and well-documented limitations, can be robustly applied to a wide variety of models.
No such toolkit exists for studying nonequilibrium dynamics.

Increasingly, statistical physicists are embracing techniques from probability theory to
probe rare events in nonequilibrium systems. This is a timely and necessary effort: Many of
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the cell’s most important processes, even at the molecular scale, consume energy. Molecular
motors and ratchets, in particular, have been a topic of intense research [1–3]. They are
implicated in crucial biological functions—actin networks actively remodel membranes [4–
11], kinesin and dynein proteins transport cargo through the cell [12], and viral motors
package the genome for replication and subsequent infection [13].

These dissipative processes rely on directional chemical reactions, which push energy
consuming proteins far away from equilibrium. This thesis focuses, both in general and in the
context of specific models, on the nonequilibrium dynamics of driven systems. Studying the
statistical dynamics of nonequilibrium control gives us a detailed picture of the relationship
between perturbations and response when we push a system far from its equilibrium state.
The general prescriptions that we offer for understanding the relationship between dissipation
and control provide design principles for fabricating biomimetic machines and, at the very
least, a deeper appreciation of the syzygy between fluctuations and control.

The tools developed in this thesis focus on finding paradigms for external control that
minimize the work dissipated to the environment. However, the approaches taken throughout
are not confined to this narrow goal. Applications to self-assembly, motivated by the final
chapters of this thesis, will require adapting the ideas herein to new types of objective
functions.

1.1 Nonequilibrium dynamics

Markov processes

Physical systems, on the shortest timescales, evolve deterministically. On mesoscopic timescales,
the dynamics can be modeled as a random process, abstracting the chaotic interactions with
the fluctuating environment into noise. Einstein was among the first to point out that dy-
namics can be approximated by a Markov process on timescales longer than the systems’
autocorrelation time [14]. Fragments of a physical trajectory are statistically independent
when the observation time is sufficiently long. A stochastic process possesses the Markov
property when it lacks a memory of past events [15]. Mathematically, a Markovian system
can be analyzed much more tractably than a system for which subsequent portions of a
trajectory are not statistically independent.

Our ability to model a system’s dynamics as a Markov process assumes a separation of
timescales between molecular motions and transitions between states on mesoscopic scales.
For example, a protein is buffeted by its solvent and evolves deterministically on timescales in
the femtosecond regime. A large scale transition between distinct mesostates of the protein,
however, might only be expected once every microsecond. This gives the system ample
time to become decorrelated from its initial state through random, thermal motions. When
memory of the initial state of the system is erased by chaotic collisions with the solvent, the
apparent statistics become memoryless, as well.
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Throughout, we will be concerned with Markov processes on a finite state space. It is
convenient to represent the state space as a directed graph G = (V,E), where V denotes the
set of states {Xi}Nvi=1 and E denotes set of possible transitions between mesostates, {eij}Nei,j=1,
which forms of the edges of the graph. Associated with each directed edge eij is a weight
Wij that determines the rate of a transition from state Xj to state Xi. Physically, the weight
Wij represents the statistical distribution of waiting times for transitions from Xj to Xi

P (twait = t) ∝ e−Wijt. (1.1)

The assumption of Poisson statistics is a natural one for Markov processes because any pro-
cess for which each transition event is statistically independent of past or future transitions
must obey Poisson statistics [15]. Of course, describing a physical process in terms of pure
Poisson processes is not always possible.

With the graph and transition rates in hand, we can describe the stochastic time evolution
of the system, which we represent as a trajectory taking on values X(ti) = Xj ∈ V for times
t ∈ [t0, tk] and transitions at times {ti}ki=0

P [X(t)] = p(X(t0))p(X(t1)|X(t0)) . . . p(X(tk)|X(tk−1)). (1.2)

This expression takes on a simple form due to the fact that each transition depends only on
the state of the system at time ti. In principle, to learn about dynamics of the system that
we are modeling, we can collect a large number of trajectories X(t) and study that ensemble
of trajectories.

A much more powerful approach relies on analyzing the master equation of the process.
Rather than the dynamics of an single-walker trajectory, the master equation formalism
describes the evolution of a vector of probabilities on V. Let ρ(t) be a vector in RNv with
components that represent the probability density at each site. The master equation is an
explicit formula for the time-evolution of this density in terms of generator Wij

∂tρ(t) = Wρ(t). (1.3)

We assume that all the transition rates are strictly non-negative. The matrix W must
additionally satisfy the property that

Wii = −
∑
i 6=j

Wij, (1.4)

meaning that we can write the time evolution of the probability density ρi at a single site
vi ∈ V as

∂tρi(t) =
∑
j 6=i

Wijρj(t) +Wiiρi(t). (1.5)

The first term on the right hand side represents the flow of probability into state i, whereas
the second term accounts for escape from state i. A matrix W satisfying these assumptions
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we call a stochastic Metzler matrix and we note that its dynamics conserves probability. We
will refer to W as a “rate matrix.”

The dynamics will eventually reach a “steady state” in which the probability distribution
is no longer changing, regardless of its initial value. An eigendecomposition of the master
equation reveals this limiting behavior. We first write a formal solution to Eq. (1.3)

ρ(t) = eWtρ(0), (1.6)

noting that, in general, diagonalizing eWt will be prohibitively difficult. Expanding the
matrix exponential over some short time ∆t, we get a discrete time transition matrix

T = eW∆t = I +W∆t+O(∆t2) (1.7)

Because the columns of W sum to zero, it is clear that the columns of T must sum to unity.
Equivalently, T has a left eigenvector with with eigenvalue 1. Because T is additionally a
positive matrix, we can apply the Perron-Frobenius theorem to the formal solution, a result
that states

lim
t→∞

ρ(t) = ρss. (1.8)

Note that in order for the theorem to apply, the dynamics must also be ergodic, i.e. each state
must be accessible for every other state through a finite number of transitions. The steady
state density is given by the right eigenvector with unit eigenvalue, because the propagator
leaves the density invariant.

Spectral decompositions of rate matrices are not feasibly computed for many models. The
dimensionality of the rate matrix W grows like the square number of vertices N2

v . When the
number of states is large, even computing ρss becomes computationally infeasible. This fact
should come as no surprise to condensed matter physicists, because the problem outlined
here is mathematically identical to solving for the ground state wavefunction of a many-body
quantum system. For a nonequilibrium dynamical system with a time-dependent rate matrix
W (t), this challenge is even further amplified. Studying the dynamics of complex systems
requires sophisticated numerical strategies, as we will discuss in later chapters.

Diffusions

When we track the state of a system through continuous space, it becomes cumbersome to
represent each state as the vertex of a graph. The configuration of a system of particles, for
example, would be better represented as a coordinate X ∈ R3n, where n is the number of
particles. The time evolution of the state of the system Xt may again satisfy the Markov
property, but continuous state spaces demand a distinct formalism. The representation of
the master equation (1.3) in continuous space defines the diffusion process [16].

In diffusion processes, the role of short-timescale microscopic events is abstracted into
a random force that influences the dynamics of the system. The effect of the surrounding
medium on the system described by the coordinate X is represented a Gaussian spectrum
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of forces. The magnitude of the random force is determined by the temperature of the
environment and must be consistent with the fluctuation-dissipation theorem, cf. Chapter 3.

The mathematical representation of a diffusion process involves some subtleties. We
again represent the time-evolution of the system as a differential equation, akin to Eq. (1.3).
However, the interpretation of the precise meaning of the equation is sensitive to a choice of
stochastic calculus. A Langevin equation at inverse temperature β is a typical example:

dXt = −∇V (Xt, t)dt+ fext(Xt, t)dt+
√

2β−1b(Xt, t)dWt, (1.9)

where V is the potential energy of the system, fext is an external force, D ≡ 1
2
bbT is a

spatially and time-dependent diffusion tensor, and Wt is the Wiener process. Note that, in
nonequilibrium systems, V can be time-dependent and fext need not be a conservative force.

The Wiener process should be viewed as a source of randomness. Its differential

dWt = ξ(t)dt, (1.10)

is a random process that generates Gaussian “white noise”,

ξ(t) ∼ N (0, 1), (1.11)

〈ξi(t)ξj(t′)〉 = δijδ(t− t′). (1.12)

Further details of this process are outlined in Appendix A.
When b(Xt, t) does not depend on Xt, Eq. (1.9) is defined unambiguously. However, if D

must be evaluated at a particular value Xt, we must make a choice as to how we discretize the
equation. The two most common conventions are known as the Itō and Stratonovich calculi.
Let Xi denote the configuration at some point in time. After propagating the dynamics for
a short time ∆t, the configuration is Xi+1. The Itō convention is “non-anticipating” and
evaluates all functions at Xi, whereas the Stratonovich interpretation uses the midpoint of
the interval, Xm = (Xi+1 +Xi)/2. These choices specify the following two equations

Itō→ Xi+1 = Xi −∇V (Xi, t) + fext(Xi, t) +
√

2β−1b(Xi, t)∆W, (1.13)

Stratonovich→ Xi+1 = Xi −∇V (Xm, t) + fext(Xm, t) +
√

2β−1b(Xm, t)∆W. (1.14)

The distinction would be largely immaterial for studying physics were it not that the choice
results in distinct Fokker-Planck equations for the dynamics. If we interpret Eq. (1.9) using
the Stratonovich calculus, a choice common in the physics literature, then the equivalent Itō
equation has an additional drift

dXt =

(
−∇V (Xt, t) + fext(Xt, t) +

1

2
b(Xt, t)∂xb(Xt, t)

)
dt+

√
2β−1b(Xt, t)dWt. (1.15)

The formalism discussed here influences the definition of observables that we will use to
study nonequilibrium dynamics.
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Nonequilibrium observables

Detailed balance is the signature of equilibrium dynamics. An equilibrium probability dis-
tribution does not evolve in time, so each microscopic transition must satisfy

p(Xi)p(Xi → Xj) = p(Xj)p(Xj → Xi). (1.16)

The consequence of this mathematical constraint is that probability does not flow through
the system on average. For a detailed balance dynamics, we find that the probability of an
individual trajectory is invariant under time-reversal

p(X0)p(X0 → X1) . . . p(Xk−1 → Xk)

p(Xk)p(X1 → X0) . . . p(Xk → Xk−1)
= e−βE0+βEk−

∑k
i=1 βEi−βEi−1 ≡ 1. (1.17)

When a system is out of equilibrium, its dynamics does not satisfy detailed balance.
As a result, the trajectories that a nonequilibrium system executes are not invariant under
time-reversal. To quantify the extent to which detailed balance is broken, we compare a
trajectory subject to the external protocol Λ(t) with its time-reversal. When considering the
time-reversed trajectory it is extremely important that we also reverse the protocol. Then,
we can define a quantity ω[X(t),Λ(t)], which we will later see has a deep thermodynamic
meaning

ln
PF[X(t),Λ(t)]

PR[X̃(t), Λ̃(t)]
≡ ω[X(t),Λ(t)], (1.18)

where the subscripts F and R denote forward-time and reverse-time distributions of tra-
jectories. The symbol ·̃ represents the time-reversal operation. The lack of time-reversal
symmetry in a nonequilibrium system means that ω[X(t),Λ(t)] can be nonzero.

For a Markov process, we can write explicitly the ratio of the forward and reverse prob-
abilities in Eq. (1.18)

ln
PF[X(t),Λ(t)]

PR[X̃(t), Λ̃(t)]
= ln

p(X0)p(X0 → X1) . . . p(Xk−1 → Xk)

p(Xk)p(X1 → X0) . . . p(Xk → Xk−1)
. (1.19)

While the trajectory as a whole need not be reversible, each microscopic transition is asso-
ciated with an external reservoir to which it is coupled

p(Xi → Xi+1)

p(Xi+1 → Xi)
=
p(Xi+1)

p(Xi)
. (1.20)

If, at the time of the transition, the system is coupled to a thermal reservoir at inverse
temperature β, the logarithm of the ratio of the probabilities quantifies the amount of heat
that has flowed into the system from the reservoir

ln
p(Xi → Xi+1)

p(Xi+1 → Xi)
= −β

(
E(Xi+1)− E(Xi)

)
(1.21)
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The assumption, sometimes known as “local detailed balance” stipulates that energy re-
quired for a spontaneous transition is drawn from a single reservoir in the form of heat.
However, over the course of the trajectory, the system might differentially be coupled to
multiple reservoirs. This notion is not restricted to thermal couplings; for example, in a
grand canonical ensemble, material could be exchanged with multiple chemical reservoirs.

The local detailed balance assumption relates the extent of broken detailed balance over
the course of a trajectory to the heat absorbed by the system from the environment. Ex-
plicitly, the total entropy production in a single trajectory can be quantified as

− βQ[X(t),Λ(t)] = ω[X(t),Λ(t)] =
k−1∑
i=0

ln
p(Xi → Xi+1)

p(Xi+1 → Xi)
= −β

(
E(Xi+1)− E(Xi)

)
. (1.22)

This relation, known as the Crooks Fluctuation Theorem, establishes a direct correspon-
dence between time-reversal symmetry and entropy production in microscopically reversible
dynamics [17–21]. Its importance cannot be overstated: this correspondence is the cor-
nerstone of the modern approach to nonequilibrium statistical physics. The fluctuation
theorem has been extended to many types of dynamics, including Langevin dynamics [21,
22] feedback-measurement protocols [23, 24], and transformations between nonequilibrium
steady states [25–27]. It should be noted that results mathematically identical to the fluc-
tuation theorems were independently discovered in the statistics literature and have found
applications in machine learning [28].

Remarkably, the equilibrium free energy difference between two thermodynamic states
can be estimated using the Crooks Fluctuation Theorem [19]. Averaging an ensemble of
nonequilibrium trajectories

∆F = −β−1 ln
〈
e−βW

〉
. (1.23)

This relation, known as the Jarzynski equality, historically precedes—and provided an im-
petus for the development of—the fluctuation theorem [29].

Experimental tools cannot accurately resolve the minute energy differences necessary to
measure the entropy production for an isolated trajectory. This limitation has led to sys-
tematic explorations of a wide range of alternative “dynamical” observables to characterize
nonequilibrium systems. Unlike the static observables common in equilibrium systems, a
dynamical observable depends on the entire history of a trajectory. Mathematically, a dy-
namical observable is a functional, hence the use of square brackets for the arguments to
ω.

The generic form of a nonequilibrium observable for a Markov jump process can be
written as a sum over all of the transitions in a dynamical trajectory

A[X(t)] =
k∑
i=0

A(Xi → Xi+1). (1.24)

One example is the activity, which simply counts the total number of transitions in a tra-
jectory. Currents, which, unlike the activity resolve the direction of the dynamics on the
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graph, will play a significant role in Chapter 3. The work, heat, and entropy production are
also dynamical observables.

In the case of diffusions, the form of a dynamical observable is the continuous general-
ization of the expression for jump processes, Eq. (1.24). We accumulate the “transitions” in
the value of X using a Stratonovich product, denoted by ◦,

A[Xt] =

∫ tobs

0

A(Xt) ◦ dXt. (1.25)

The mathematical details of this formula can be found in Appendix A.
A unifying theme of the functionals considered here is that they grow linearly in time, on

average. The “time-extensive” growth of dynamical observables underpins a thermodynamic
formalism for nonequilibrium systems, based on large deviation theory [30–32]. We will
make frequent use of the mathematical tools and physical insights provided by this approach
throughout.

Dynamical observables other than the dissipation can also act as a signature of nonequi-
librium dynamics. Currents, which vanish on average in equilibrium systems, can be a
persistent feature of a nonequilibrium steady state [33]. Current-like observables have been
used in recent experiments to demonstrate violations of detailed balance in biological sys-
tems [11]. In addition to currents, alternative dynamical order parameters can be used to
quantify the rate of relaxation. In classical systems, work on the glass transition has relied
on the activity as a measure of dynamical heterogeneity [34–37]. A similar approach may
find applications in quantum systems to characterize the many-body localized phase [38, 39],
with a dynamical order parameters like the entanglement growth that tracks the increase in
von Neumann entropy as a function of time [40].

1.2 Large deviations

The formalism of statistical mechanics has deep and pervasive analogies to the theory of large
deviations in probability. Perhaps the most direct incarnation of the inherent similarities
between the two disciplines appears in the partition function. This function, which is all-
but-impossible to compute for complex systems, contains complete information about the
set of microscopic states and their statistical weights in the specified environment. The
fundamental postulate of statistical mechanics is, in fact, a statement about the partition
function: At constant energy, volume, and number density, every microscopic state is equally
likely, meaning that the partition function is simply

Z =
∑
ν

1, (1.26)

where the sum is taken over all states of the system ν consistent with the specified thermo-
dynamic variables. The nomenclature commonly encountered in statistical mechanics can
obscure the fact that Z is simply the normalization constant of a probability distribution over
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the space of all microstates. With this parallel in mind, we leverage tools from probability
theory to analyze the partition function. This perspective confers mathematical advantages
when studying nonequilibrium systems.

Cumulant generating functions and the partition function

The well-established theory of equilibrium statistical mechanics defines a set of statistical
ensembles each of which describes a system coupled to a fixed thermodynamic environment.
Consider a system with phase space coordinates X ∈ R3n occupying a fixed volume in real
space. Assuming that the energy is held constant and that the dynamics is ergodic, each
accessible microstate is postulated to be equally likely. Under these conditions, we can define
the microcanonical ensemble, which is the volume of the submanifold U ⊆ R3n at which the
energy is constant

Z(E, V,N) =

∫
d3nX δ(E(X)− E). (1.27)

Physically, a system governed by microcanonical statistics must be perfectly isolated from a
thermal, chemical, or barostatic environment, lest it exchange energy, volume, or particles
with the external world.

Preparing isolated systems is challenging in laboratory conditions, so it is often more
useful to fix an intensive parameter that sets the degree of coupling to the environment
and allows fluctuations. This can be achieved by introducing a statistical bias that sets
the average of one or more of the thermodynamic variables. In the case of the canonical
ensemble, we write,

Z(β, V,N) =
∑
ν

e−βE(ν), (1.28)

=
∑
E

e−βEZ(E, V,N), (1.29)

∝
〈
e−βE

〉
. (1.30)

The parameter β−1 = kBT is conjugate to the energy and defines the inverse temperature
up to the Boltzmann constant kB.

When suitably normalized, the canonical partition function is transparently related to
the cumulant generating function for the energy distribution. Let ε = E/N and then a
function of the form

ψE(β, V,N) = lim
N→∞

N−1 ln
〈
e−Nβε

〉
, (1.31)

is called a cumulant generating function because its nth derivative with respect to β, eval-
uated at β = 0, is the nth cumulant of the per-particle energy distribution. Averaging over
the unnormalized distribution does not affect the computation of cumulants, e.g.,(

∂ ln〈e−βE〉
∂β

)
V,N

=

(
∂ lnZ(β, V,N)

∂β

)
V,N

, (1.32)
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and thus the Helmholtz free energy A(β, V,N) ≡ −β−1 lnZ(β, V,N) can be viewed as a
cumulant generating function for the energy.

The complete sequence of cumulants for an observable fully characterizes its full prob-
ability distribution. If the observable, energy in the present discussion, grows extensively
with the size of the system, it satisfies a large deviation principle [32], meaning that,

lim
N→∞

N−1 lnP (ε) = I(ε) + o(1), (1.33)

P (Nε) � exp (−NI(ε)) . (1.34)

The symbol � connotes the asymptotic equality of the terms up to logarithmic corrections.
The function I(ε) describes the exponential rate of decay of probability away from the average
and is therefore called the large deviation rate function.

We can compute the rate function directly from the cumulant generating function〈
e−βNε

〉
=

∫
exp [−NI(ε)− βNε] . (1.35)

Because N is large, the integral can be evaluated using the Laplace saddle-point method,
setting

ψE(β) = inf
ε
{I(ε) + βε} , (1.36)

we obtain 〈
e−βNε

〉
= eNψE(β). (1.37)

Mathematically, Eq. (1.36) states that I(ε) is the Legendre-Fenchel transform of the scaled
cumulant generating function (1.31), a result known as the Gärtner-Ellis Theorem [32].

We can carry out an analogous program for the nonequilibrium case, where thermody-
namic state variables are insufficient to characterize the system. In this more general setting,
we must compute partition functions over the space of trajectories of some duration t, rather
than configurations. The relevant order parameters in this context are the dynamical or-
der parameters discussed in Section 1.1. The dynamical equivalent of the microcanonical
partition function, denoted Z(A, tobs), counts all accessible trajectories of duration tobs with
A[X(t)] = A.

Just as in the equilibrium case, it is often inconvenient to have a rigid constraint on the
value of the dynamical observable. Performing a Laplace transformation as above, we can
derive a statistical ensemble in which A fluctuates and its average is determined by the value
of a statistical bias conjugate to A. For example, we can transform Z(A, tobs) to

Z(s, t) =

∫
D[X(t)] Z(A[X(t)], tobs)e

−sA[X(t)] (1.38)

with a cumulant generating function

ψA(s) = lim
tobs→∞

−tobs
−1 lnZ(s, tobs), (1.39)
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Figure 1.1: (a) A schematic of a time-scaled cumulant generating function for a dynamical
observable, the slope at zero, which determines the zero value of the large deviation rate
function, is shown as a blue dashed line. (b) The Legendre-Fechnel transform of the cumulant
generating function, which is the large deviation rate function.

where the subscript denotes the time-extensive dynamical order parameter and the argument
is a conjugate intensive parameter. In light of the analogy we have been following, ψA(s, tobs)
is a dynamical free energy, related to the probability distribution of A/tobs via a Legendre-
Fenchel transform. A crucial observation is that the large parameter in the nonequilibrium
setting is the duration of a trajectory, not the number of particles. While a thermodynamic
free energy requires an N → ∞ limit to rigorously show a phase transition, the dynamical
free energy can develop singularities with a finite spatial extent.

1.3 Fluctuations and response away from equilibrium

The mathematical approach we have laid out establishes a natural equivalence between
fluctuations and the response to an externally tuned field. If we view the parameter s as an
external field conjugate to the dynamical observable A, then we can compute the change in
the expectation of A to a change in s as

∂〈A〉
∂s

=
∂2 lnZ(s, tobs)

∂s2
. (1.40)

The response to small changes in s is encoded in the dynamical free energy ψA(s, tobs), rein-
forcing the analogy with equilibrium statistical mechanics. Because ψA(s, tobs) is a cumulant
generating function, its higher derivatives provide information about the nonlinear response
to changes in s. When evaluated at s = 0, the second derivative of the logarithm of the
dynamical partition function is the variance of A

∂2 lnZ(s, tobs)

∂s2
= 〈A2〉 − 〈A〉2. (1.41)
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This asserts the correspondence between dynamical fluctuations and response.
The field s can seem abstract because it is a time-nonlocal parameter that might be

difficult to tune physically. Nevertheless, like the statistical biases commonly used in stan-
dard free energy calculations [41], the fictitious field plays an important role in our effort
to study rare features of the trajectory ensemble. In order to compute the scaled cumulant
generating function, we construct an effective process in which rare values of the dynamical
order parameter A become typical. We carry this out by imposing a statistical bias on A
throughout the dynamics, which can be accomplished by choosing a non-zero value of s, and
then appropriately reweight the biased trajectories.

Mathematically, we can view this procedure as a change of measure on the space of
trajectories. Suppose that we would like to collect trajectories for which some value A∗ 6= 〈A〉
is typically observed. To do so, we construct a probability measure on the space of trajectories
P ∗[X(t)] in which A∗ is the average value of A[X(t)], that is,∫

D[X(t)] P ∗[X(t)]A[X(t)] = A∗. (1.42)

To compute the probability of the rare value A∗, we use the standard trick of importance
sampling

P (A∗) =

∫
D[X(t)]

P [X(t)]

P ∗[X(t)]
P ∗[X(t)]δ(A[X(t)]− A∗). (1.43)

While the identity above seems trivial, it is of significant practical consequence both compu-
tationally and theoretically. The simplest demonstration of that advantage is that it might
be much easier to draw trajectories with A[X(t)] = A∗ from the biased distribution, which
will help reduce the variance an estimate of P (A∗).

In order to bias the dynamics, we exponentially “tilt” the path measure

P ∗[X(t)] = P [X(t)]e−sA[X(t)] ≡ Ptilt[X(t)]. (1.44)

The generator associated with the tilted measure does not conserve probability. In the case
of a Markov jump process, the tilted generator, which we denote W (s), is related to the rate
matrix W of the unbiased process. In particular, we just bias the transition rates with a
weight proportional to the contribution a transition from j to i makes to the value of the
observable A

Wij(s) = Wije
−sA(Xj→Xi). (1.45)

We can justify the choice of an exponential bias with a simple calculation. The mini-
mally invasive way of biasing the distribution will minimize the Kullback-Liebler divergence
between the original and the distribution in which a rare value A∗ is typical

DKL

(
P ∗[X(t)]‖P [X(t)]

)
=

∫
D[X(t)] P ∗[X(t)] ln

P ∗[X(t)]

P [X(t)]
. (1.46)

By abuse of language, the divergence is sometimes called a distance because it, roughly,
computes the overlap or distance between the two distributions. It is not, however, a distance
in the mathematical sense of the word.



CHAPTER 1. INTRODUCTION 13

To see the emergence of an exponential bias, we minimize the divergence over all functions
P ∗[X(t)] while enforcing a normalization constraint and a constraint on the average,

1 =

∫
D[X(t)] P ∗[X(t)], (1.47)

A∗ =

∫
D[X(t)] A[X(t)]P ∗[X(t)]. (1.48)

This calculation can easily be carried out using the method of Lagrange multipliers

0 =
δ

δP ∗[X(t)]

[
α

(∫
D[X(t)] P ∗[X(t)]− 1

)
− s

(∫
D[X(t)] A[X(t)]P ∗[X(t)]− A∗

)
−DKL

(
P ∗[X(t)]‖P [X(t)]

)]
.

(1.49)

The result of the functional minimization is

P ∗[X(t)] = P [X(t)]e−sA[X(t)]eα, (1.50)

and the optimal value of s is given by the Legendre transform

sopt = argmins

(
sA∗ + ln

∫
D[X(t)] P [X(t)]esA[X(t)]

)
. (1.51)

The maximization defining the optimal value of s, Eq. (1.51), if evaluated at sopt is the
Legendre-Fenchel transform I(A∗) of the cumulant generating function ln〈exp (−sA)〉.

The long-time behavior of dynamics generated by Wij(s) can be assessed by studying
the spectrum of the tilted generator. The maximum eigenvalue of Wij(s), which we denote
λ(s), is related to the cumulant generating function for the asymptotic statistics

λ(s) = lim
tobs→∞

1

tobs

ln〈e−sA/tobs〉. (1.52)

We know from the Gärtner-Ellis theorem that λ(s) is related to the large deviation function
I(A/tobs) by a Legendre-Fenchel transform, as depicted in Fig. 1.1 and given by Eq. (1.36).

Hence, the tilted path measure gives us a means to compute large deviation function for
an arbitrary dynamical observable. However, the bias that we have added to the genera-
tor makes the process unphysical in the sense that probability is no longer conserved [42].
This observation led Chetrite and Touchette [42] to consider a generalization of Doob’s
h-transform that produces a conservative generator for the rare dynamics. We call the gen-
erator of the “driven process” W(s). In the context of importance sampling rare trajectories,
knowing this generator amounts to having the “perfect” importance sampler: no reweighting
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is needed because each sample is generated without any statistical bias. Nevertheless, there
is a significant caveat. The h-transform requires knowledge of the right-eigenvector r(s) with
maximum eigenvalue, because the unique form of the generator for the driven process is

Wij(s) = r−1
i (s)Wij(s)rj(s). (1.53)

Thus, computing r(s) for each value of s is mathematically equivalent to computing ψA(s).
While computations using these techniques remain challenging, large deviation theory has

become an important tool for extending statistical mechanics beyond the near-equilibrium
approximations that dominated the field for most of the 20th century [43–47]. Its connection
with thermodynamic formalism makes it a natural language for connecting fluctuations in
dynamical order parameters with response. We will employ this perspective frequently in
what is to come.
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Chapter 2

Large deviations in thermodynamic
efficiency

So you would be violating the Second Law of Thermodynamics, getting something for
nothing. . .

Thomas Pynchon. The Crying of Lot 49.

As engineering capabilities reach molecular scales, design principles must account for
the large fluctuations inherent in the behavior of nanoscale machines [24, 48–51]. Famil-
iar thermodynamic quantities, such as the heat absorbed, work extracted, and efficiency
do not realize a single value for small scale machines, and require the use of stochastic
thermodynamics [18, 52–54]. Instead, each quantity varies from one measurement to the
next according to a probability distribution; rare excursions from the average operation of
the device can have dramatically counterproductive consequences. In order to analyze the
thermodynamic efficiency in this regime, an understanding of the statistics of the relevant
quantities is crucial. This section uses material from Gingrich, Rotskoff, Vaikuntanathan,
and Geissler [55].

Knowledge of the fluctuations in thermodynamic efficiency, a measure of the work ex-
tracted per amount of heat absorbed defined by Carnot as η = −W/Qh, provides a powerful
viewpoint from which to assess a nanoscale machine [56]. Verley et al. employed large devia-
tion theory to highlight some surprising features of the statistical properties of a fluctuating
efficiency [57]. They argued that in a long-time limit the efficiency distribution would at-
tain the form P (η) ∼ etobsJ(η), where tobs denotes the observation time, and that the large
deviation rate function, J(η) has a global minimum at the “reversible” efficiency for time-
symmetric driving. At this efficiency, sufficiently long trajectories produce no entropy. In
the case of a heat engine, the reversible efficiency is the Carnot efficiency ηC = 1 − Tc/Th,
the maximum efficiency that can be attained by a heat engine on average [56, 58]. Here, we
address the more practical case of devices operating under time-asymmetric non-equilibrium
protocols. Standard engine protocols such as the Carnot cycle and the Stirling cycle are
time asymmetric for both macroscopic and microscopic realizations [59].
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For a two-level model of a nanoscale heat engine, we examine the statistics and large
deviation scaling for the work, heat, and thermodynamic efficiency. By computing a large
deviation rate function for joint observations of W and Qh we in turn calculate the long-
time behavior of the probability distribution for η [32]. In particular, we determine the
rate function for η, which resembles rate functions analyzed in [57]. However, we show
that time-asymmetric driving shifts the location of the minimum away from the Carnot
efficiency. As such, the result of Verley et al. [57] does not generalize to encompass common
engine protocols. Furthermore we note an important caveat pertaining to the relationship
between the probability distribution of η and its asymptotic representation as etobsJ(η). As
a consequence the efficiency distribution sampled over long but finite times may not reveal
the minimum predicted by an analysis of the efficiency rate function. We obtain the form
of these finite-time distributions, which we expect to be significantly more relevant to the
understanding of efficiency statistics in experiments.

We aim to explore generic features of efficiency distributions in non-equilibrium engines,
but physical systems can be held out-of-equilibrium in two fundamentally different ways. A
system can be out-of-equilibrium in a time-independent manner if it is held in contact with
multiple reservoirs maintained at different thermodynamic conditions (e.g. two unequal tem-
perature baths can induce a temperature gradient across a system). Verley et al. constructed
a model of one such system, photoelectric cells, for which the temperature of Earth served
as one bath and the temperature of the Sun as another [57]. The non-equilibrium protocol
driving these systems is time independent and therefore time-reversal symmetric, which we
will show has significant implications for the efficiency distribution. More generally, systems
can be out of equilibrium if they are driven in a time dependent manner, which need not be
a time-symmetric protocol.

We investigate this scenario by constructing a two-state model of a stochastic engine.
The temperature and energy levels are varied cyclically through four consecutive stages (see
Fig. 2.1),

Stage 1: T (1) = Tc, E
(1)
L = 0, E

(1)
R = 0

Stage 2: T (2) = Tc, E
(2)
L = 0, E

(2)
R = −∆E

Stage 3: T (3) = Th, E
(3)
L = 0, E

(3)
R = −2∆E

Stage 4: T (4) = Th, E
(4)
L = 0, E

(4)
R = −∆E,

with EL and ER the energies of the left and right states. Th and Tc are the high and low
temperatures respectively achieved by alternately coupling the two-state system to hot or
cold baths. The superscript on temperatures and energies acts as an index for the stage of
the cycle.

We carry out each cycle in time τ , with each stage lasting for τ/4 units of time. During
each stage the particle can hop between the left and right states with Arrhenius rates given



CHAPTER 2. LARGE DEVIATIONS IN THERMODYNAMIC EFFICIENCY 17

T
c

T
c

T
h

T
h
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Figure 2.1: A single particle can occupy one of two energy levels with thermal transitions
between the states. The energy of the right state, ER and the temperature, Th or Tc are
instantaneously switched in a cycle among four stages. These switches occur in multiples of
τ/4, where τ is the period of the cycle.

by a tunable barrier height, B. The continuous time rate matrix for the ith stage of the cycle
is therefore

W(i) =

(
−e−β(i)B e−β

(i)(B−E(i)
R )

e−β
(i)B −e−β(i)(B−E(i)

R )

)
, (2.1)

with β(i) ≡ (kBT
(i))−1 and the Boltzmann constant, kB, set equal to unity throughout.

Work is extracted from the system when the right energy level is occupied while being
instantaneously lowered. Each transition between the energy levels requires heat absorbed
from the reservoir equal to the energy difference between the levels. We adopt the conventions
that positive heat flow corresponds to heat flowing into the system and that positive work
is performed on the system [18, 29]. The simplicity of our four stage, two-state model lends
itself to formal analysis of these fluctuating quantities as well as exhaustive computational
study.



CHAPTER 2. LARGE DEVIATIONS IN THERMODYNAMIC EFFICIENCY 18

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææææ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææææ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææææ

æ
æ
æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææææ

æ
æ
æ

IHW�TobsL

æ 50 Cycles

æ 100 Cycles

æ 200 Cycles

æ 500 Cycles

-0.2 -0.1 0.0 0.1

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

W�Tobs

L
o
g
P
HW
�T
o
b
sL
�T
o
b
s

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
ææ
æææææ

æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
ææ
æææææ

æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ
æ
æ
æ
æ
ææ
æææææ

æ
æ
æ
æ

æ

æ

æ

æ
æ
æ
æ
ææ
æææææ

æ
æ
æ
æ

IHQh�TobsL

æ 50 Cycles

æ 100 Cycles

æ 200 Cycles

æ 500 Cycles

-0.2 -0.1 0.0 0.1 0.2 0.3

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Qh�Tobs

L
o
g
P
HQ

h
�T
o
b
sL
�T
o
b
s

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

ææ

æ
æ

æ
æ
æ

æ

æ

æ

æ

æ

æ
ææ
æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ
æ
æ

æ
ææ
æ

ææ
æ
ææ
ææ
ææ
æ
æ
æ
æ
æ
æ

æ
æ

æ
æ
ææ

æ

æ

æ

æ

æ

æ

æ
æææ
æ
æ
æ

æ
ææ
æ

æ
æ
æ

æ

ææ
æææ
æææ
ææ
ææ
ææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ

æ
æ
ææ

æ

æ

æ

æ

æ æ

æ æ
æ
æ
æ
æ
æ
æ
æ
ææ
æ

æ

æ

JHΗL

50 Cycles

100 Cycles

200 Cycles

500 Cycles

-3 -2 -1 0 1 2 3

-0.020

-0.015

-0.010

-0.005

0.000

Η

L
o
g
P
HΗ
L�
T
o
b
s

HaL HbL HcL

Figure 2.2: (a) Work, (b) heat, and (c) efficiency sampling from 3 × 107 trajectories of the
four stage, two-state engine with ∆E = 2.375, Tc = 2, Th = 14, B = 0.05, and period τ = 10.
The large deviation rate functions are shown as a solid black line. Histograms of sampled
values are shown as large circles. The small circles in (c) plot the result of integrating out
∆S in Eq. (2.16).

2.1 Simulations

While the particle dynamics occurs in continuous time, the heat and work are solely functions
of the position of the particle at the end of a stage. We advance time in units of τ/4 by
drawing the state at the end of each stage in proportion to its probability, computed using
the matrix exponential T(i) = eτW

(i)/4. We collected statistics on the work extracted, heat
absorbed, and efficiency of steady state stochastic trajectories evolved over many repeated
engine cycles for a choice of parameters for which the protocol acted as an engine: ∆E =
2.375, Tc = 2, Th = 14, B = 0.05, and τ = 10. The histograms, shown in Fig. 2.2, illustrate
that the system acts as engine on average — the mean work supplied to the system is
negative while mean heat absorbed from the hot bath is positive, resulting in a positive mean
efficiency. Furthermore, direct sampling of trajectories with varying lengths, tobs, numerically
illustrates that the heat and work distributions tend to a large deviation form [21, 32, 60].
The probability of observing a total work W and total heat absorbed from the hot bath Qh

in a trajectory of length tobs can thus be written as

p(W ,Qh) ∼ etobsI(Qh/tobs,W/tobs), (2.2)

where ∼ denotes an equality in the asymptotic limit and I(Qh/tobs,W/tobs) is the large
deviation rate function. The large deviation scaling is robust even for a modest tobs of only
50 engine cycles. The heat and work statistics of trajectories evolved for at least 50 engine
cycles can therefore be well-described by a large deviation rate function.

The statistics of efficiency are similarly shown in Fig. 2.2(c) along with the efficiency rate
function, J(η). The sampled distributions for our finite time measurements show no mini-
mum. As expected, the efficiency distribution tends toward P (η) ∼ etobsJ(η) at long times,
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but in practice even a large tobs is not sufficient for the minimum of the large deviation
rate function to be relevant to the efficiency distribution. In marked contrast to the statis-
tics of heat and work, the large deviation form is not predictive of the sampled efficiency
distributions for the reported values of tobs.

2.2 Large deviation rate functions for W ,Qh,and η

The large deviation function, I(W/tobs,Qh/tobs), can be calculated using standard methods
of large deviation theory [21, 32]. We introduce two fields, λW and λQh

and construct a
scaled cumulant generating function for W and Qh,

ψ(λW , λQh
) = lim

tobs→∞

1

tobs

log〈e−λWW−λQh
Qh〉. (2.3)

Applying a saddle point approximation, which is exact in the long-time limit, reveals that
I(W/tobs,Qh/tobs) can be obtained from ψ(λW , λQh

) by a Legendre transform 1. In the long-
time limit the scaled cumulant generating function can be found as a maximum eigenvalue
of the appropriate “tilted operator,” which for our model must involve a product of tilted
operators stemming from each stage of the engine [32].

Recall that work is performed instantaneously between stages and only if the particle is
in the right state, so we define the tilted operator

T(i)
W (λW) =

(
1 0

0 eλW∆E(i)

)
, (2.4)

whose derivatives with respect to λW provide statistical information about the work. ∆E(i)

denotes the change in ER between stages of the protocol. The heat absorbed from the hot
bath differs from the entropy production only by a factor of βh, so the tilted rate matrix for
heat absorbed during those stages is analogous to the entropy production tilted operator of
Lebowitz and Spohn [21]. The matrix elements are given by

W(i)
Qh

(λQh
)jk =

{
W(i)

jk , j = k

W(i)
jk )ThλQh (W(i)

kj )
1−ThλQh , j 6= k.

(2.5)

The tilted rate matrix propagates in continuous time, but it is convenient to also define a
tilted operator which accounts for the complete stage, a time of τ/4.

T(i)
Qh

(λQh
) = exp

(τ
4
W(i)
Qh

(λQh
)
)

(2.6)

1This assumes an absence of dynamic phase transitions. Otherwise the Legendre transform returns a
convex hull of the rate function.
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We now construct a tilted operator, Tcycle, for the entire cycle by forming a matrix product
of the tilted operators for each stage (and each transition between stages).

Tcycle(λW , λQh
) = T(4)

W (λW)T(4)
Qh

(λQh
)T(3)
W (λW)T(3)

Qh
(λQh

)T(2)
W (λW)T(2)T(1)

W (λW)T(1) (2.7)

Note that because we do not record heat absorbed from the cold bath, the cold stages involve
time propagators rather than tilted operators for Qh. In the long-time limit, repeated appli-
cation of Tcycle is well-described by its maximum eigenvalue, which we denote as ν(λW , λQh

).
The scaled cumulant generating function can then be expressed as

ψ(λW , λQh
) =

1

τ
log ν(λW , λQh

). (2.8)

A numerical Legendre transform gives the desired large deviation rate function, which is
shown in Fig. 2.3(a).

These long-time joint statistics of W and Qh determine the statistics of efficiency. We
employ the contraction principle to obtain the efficiency rate function [32]. This technique
amounts to making a saddle-point approximation along each line of constant efficiency on I,

J(η) = max
Qh

I(−ηQh,Qh). (2.9)

The result of the contraction is shown in Fig. 2.3(b). As in the prior work of Verley et al. [57],
the minimum value obtained by each curve corresponds to a class of trajectories for which the
average entropy production is zero, demonstrated in Fig. 2.3(c). Our results demonstrate
that there can be two values of efficiency for which the average entropy production vanishes,
one of which occurs at ηC. In fact, the minimal efficiency of our engine, hereafter denoted
η∗, does not occur precisely at ηC.

2.3 The location of the minimum of J(η)

The key distinguishing feature of our engine compared with those discussed in Ref. [57] is that
our protocol lacks time-reversal symmetry. To emphasize the importance of time-reversal
symmetry, we also plot the efficiency distribution of a time-reversed protocol, shown in red
in Fig. 2.3. The minimum in the rate function for the time-reversed protocol, denoted η̃∗, is
distinct from both η∗ and ηC. Indeed, we can relate η∗ to η̃∗ via the fluctuation theorem [18,
22], thereby illustrating that η∗ = ηC if and only if the protocol is time-reversal symmetric.

Entropy production is defined on a single trajectory level as

∆S = log
P [x(t)|Λ(t)]

P̃ [x̃(t)|Λ̃(t)]
, (2.10)

where x(t) is a trajectory subject to a time-dependent non-equilibrium protocol Λ(t) and a
tilde denotes the time reversal of a function [61]. Assuming that the dynamics of the system
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Figure 2.3: (a) The large deviation rate function, I, for the joint observations of W and
Qh. Parameters for the engine protocol are the same as in Fig. 2.2. The black lines have
slopes −η∗ and −ηC, corresponding to the set of (W,Qh) observations consistent with the
respective values of efficiency. (b) The efficiency rate function evaluated at η is given by the
maximum of I attained along a line through the origin with slope -η. Red and blue lines
show the rate function for the forward and reverse protocols, respectively. Note that the
minimal efficiency, η∗ corresponds to the slope of the tangent line through the origin in (a).
(c) Plot of the most likely value of entropy production in the long-time limit conditioned
upon a given value of efficiency. Only in time-reversal-symmetric protocols will this function
be strictly non-negative.

are microscopically reversible, we can interpret the entropy production in terms of the heat
absorbed from the thermal reservoirs. In particular,

∆S = −βhQh − βcQc + log
pss(x(0)|Λ(0))

p̃ss(x̃(0)|Λ̃(0))
, (2.11)

with pss denoting the steady state probability [18]. The heat is extensive in time while the
contribution due to the steady states probability distributions is not and can therefore be
neglected in the long-time limit. By the first law, Qc = ∆E−W −Qh, but we can similarly
neglect ∆E as it too does not grow extensively with the length of the trajectory. Thus in
the long-time limit ∆S = βcQh (ηC − η). It follows from Eq. 2.10 that

I(W ,Qh) = Ĩ(−W ,−Qh) + βc (QhηC +W) , (2.12)
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where Ĩ is the large deviation rate function for the time-reversed protocol. The minima of
the efficiency rate functions are determined from the gradients of I and Ĩ at (W ,Qh) = (0, 0).

η∗ =

(
∂I
∂Qh

)∣∣∣
(0,0)(

∂I
∂W

)∣∣
(0,0)

η̃∗ =

(
∂Ĩ
∂Qh

)∣∣∣
(0,0)(

∂Ĩ
∂W

)∣∣∣
(0,0)

(2.13)

Differentiation of Eq. (2.12) with respect toW andQh implies, after some simplifying algebra,

η∗ − ηC = Tc (η∗ − η̃∗)
(
∂Ĩ

∂W

)∣∣∣∣∣
(0,0)

. (2.14)

Note that ∂Ĩ
∂W

∣∣∣
(0,0)

is non-zero for systems that have non-zero mean work extraction by the

convexity of the rate function. We therefore see that η∗ = ηC precisely when η∗ = η̃∗. The
minimum of J(η) occurs at the Carnot efficiency if the protocol is time-reversal symmetric
since the symmetry enforces η∗ = η̃∗. In the more generic case of time-asymmetric engines,
however, distinct values of η∗ and η̃∗ imply that neither of the minima occur at ηC.

2.4 Finite-time efficiency distributions

As demonstrated by numerical simulation, there is a significant regime of observation times
for which the efficiency distribution is not well-described by the large deviation form and no
local minimum is evident. The minimum in the efficiency rate function therefore may not be
apparent for actual experimental measurement of efficiency statistics. Nevertheless, we may
leverage the large deviation form for work and heat, Eq. (2.2), to construct an approximation
for P (η) that is much more faithful to finite-time statistics.

Consider the coordinate transformation from (W ,Qh) to (η,∆S), where

η = −WQh

, ∆S = −βC(W + ηCQh). (2.15)

The Jacobian for this transformation contributes negligibly to the distribution P (η,∆S)
in the long-time limit since it does not vary exponentially with tobs. At long but finite
times, however, it can strongly shape statistics of η and ∆S. Retaining this Jacobian, while
exploiting the large deviation form of P (W ,Qh), we estimate

P (η,∆S) ∼
∣∣∣∣ −T 2

c ∆S

(η − ηC)2

∣∣∣∣ etobsI
(
ηTc∆S
(ηC−η)

, Tc∆S
(η−ηC)

)
. (2.16)

A saddle point approximation along the ∆S axis then gives a one dimensional representation
of the probability distribution for efficiency. This procedure produces very accurate predic-
tions for P (η) at finite tobs (small dotted lines in Fig. 2.2(c)), demonstrating that the form of
P (η) may be reliably extracted from the large deviation form for work and heat fluctuations.
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Efficiency is meant to provide an assessment of how much work can be extracted from a
machine relative to the expense of operating it. For macroscopic heat engines, fluctuations
in work and heat are vanishingly small from one cycle to the next such that efficiency for
the engine takes on a single value. Because fluctuations in a microscopic engine are large,
the efficiency also fluctuates. An understanding of the finite-time and long-time statistics of
the efficiency provides a lens through which to assess the design of a microscopic engine.

We have confirmed that the long-time statistics of time-reversible engines will exhibit
a minimum at the Carnot efficiency [57], but this minimum does not necessarily lie at the
Carnot efficiency for the ubiquitous case of time-asymmetric driving. While it is tempting
to use these long-time statistics as a representation of the efficiency distributions, in practice
efficiency distributions are collected from finite time measurements. Taking the finite time
sampling into account, we have illustrated that the universal global minimum in the rate
function is absent in efficiency distributions. Despite the fact that heat and work are well
described by a large deviation form for the observation times we examined, these times are
still too short for the efficiency rate function to be representative of the efficiency distribution.
Our results highlight that it is nevertheless possible to understand and predict efficiency
distributions on finite timescales.
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Chapter 3

Fluctuations in currents far from
equilibrium

In Section 1.1, we emphasized the difficulty of measuring dissipation directly. Currents, on
the other hand, are an easily measurable alternative signature of nonequilibrium dynamics.
However, unless detailed microscopic currents can be monitored, the available coarse-grained
information provides only an indirect probe of the amount of dissipation of the underlying
process. Remarkably, by studying the fluctuations of coarse-grained currents, we can esti-
mate the microscopic dissipation rate [62].

Near-equilibrium fluctuations correspond quantitatively to the amount of dissipation [43,
45, 63, 64]. The diverse set of relations between the fluctuations in an equilibrium system and
its dissipative response fall under the framework of the fluctuation-dissipation theorem [45].
The equality between equilibrium fluctuations and near-equilibrium response breaks down
when a system is driven beyond the linear response regime.

Extending fluctuation-response relations beyond linear response has constituted a major
effort in nonequilibrium statistical physics [65–71]. In this chapter, we discuss one such ex-
tension which asserts a bound on the dissipation rate based on current fluctuations. Demon-
strating this bound relies on mathematical tools from the theory of large deviations for
Markov processes, which we discuss thoroughly in Section 3.1. We then consider this bound
under a coarse-graining procedure that maps a time-periodic nonequilibrium steady state to
a time-independent steady state. Some of the work in this chapter appeared in Rotskoff [72]
and Gingrich, Rotskoff, and Horowitz [62].

3.1 Large deviations at level-2.5

An effort to extend the fluctuation-dissipation theorem to systems arbitrarily far from equi-
librium requires a comprehensive understanding of current fluctuations. This seemingly
extreme requirement turns out to be surmountable for some systems: a complete character-
ization of current fluctuations, at the level of large deviations, can be derived for Markovian
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dynamical systems [67, 73–75]. Our knowledge of the spectrum of current fluctuations can
then be leveraged to study dissipation.

To compute the spectrum of current fluctuations, we start with a more general large
deviation function. This approach is common in the theory of large deviations and relies on
the “contraction principle” [32, 76]. Suppose that we know the large deviation function I
for a dynamical observable A and let a ≡ A/tobs, then

Ptobs
(a) � exp (−tobsI(a)) . (3.1)

If we want to compute the asymptotic fluctuations in some other observable B which we can
express as a function of A, i.e., B = f(A) then the contraction principle says that we can
compute I(b) directly from I(a), where we have defined b ≡ B/tobs. A contraction stipulates
that the most probable value of A such that B = f(A) determines the asymptotic probability
of B. At the level of the rate functions, this means that we can determine I(b) by evaluating
I(a) at the smallest value of I(a) satisfying the constraint that f(A) = B

I(b) = inf
A s.t. B=f(A)

I(a). (3.2)

Donsker and Varadhan [76] introduced the contraction principle in a slightly more general
context, which gave rise to a “level” formalism. Their focus on functions of the density ρ
led them to introduce a “process” level rate function, which gives the large deviations of
ρ [76, 77]. Ellis referred to the process level as level II, because any function of ρ, a level
I rate function, could be computed from this more general function via contraction [78].
The categorization also includes large deviations at level III, which, in this context, is most
simply described as a large deviation functional for distribution of dynamical trajectories.

The key observables of nonequilibrium statistical mechanics do not depend on the em-
pirical density alone, as we described in Section 1.1. Understanding fluctuations in currents
and dissipation, for example, requires information about the probability of fluctuations in
the dynamics. The most direct way of probing dynamical fluctuations involves computing
the rate function for joint fluctuation in the empirical density

ρx =
1

tobs

∫ tobs

0

dt δz(t),x, (3.3)

and the empirical flow

qyx =
1

tobs

∫ tobs

0

dt δz(t−),xδz(t+),y. (3.4)

These quantities are “empirical” in the sense that they are measured over some long trajec-
tory.

In order to be explicit, let us restrict to the case of Markov jump processes on a finite
state space graph, as introduced in Section 1.1 to compute a joint rate function I(ρ, q). In
this case, it is important to note that the empirical flow contains more information than the
empirical current; the latter specifies only the difference between the flow in the forward and
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reverse directions jxy = qxy − qyx. For example, the empirical current would not distinguish
between a trajectory in which there are 100 x → y hops and 80 y → x hops from one in
which there are 20 x → y hops and 0 in the opposite direction, while the flows would be
dramatically different.

To compute asymptotic probability of a deviation ρ and q away from the expected
steady state values ρss and qss, we follow a standard approach, the Cramér tilting procedure
described in Section 1.3. The calculation proceeds by constructing an effective dynamics
in which the rare values ρ and q are typical. We then compare the probability of the rare
trajectory to a typical trajectory. A trajectory through the finite state space of the graph
can be described as a sequence of states

X0, . . . , XN (3.5)

and transition times
t1, . . . , tN . (3.6)

The probability of an individual transition in the trajectory is a function of the rates Wij

p(Xi → Xi+1) = WXi+1,Xie
−WXi,Xi

(ti+1−ti), (3.7)

and the diagonal element of the rate matrix W gives the escape rate. Because each transition
is independent under the assumption of Markovian dynamics, the probability of a trajectory
is simply the product of the terms above

P [X(t)] = ρX0

N−1∏
i=0

WXi+1,Xie
−WXi,Xi

(ti+1−ti). (3.8)

The path measure defined by Eq. (3.8) is expressed as a sum over transitions in a trajectory.
Alternatively, for a long trajectory with empirical flow q we could represent the measure
as product over all states. To do so, we need the following statement of conservation of
probability ∑

j

qij − qji = 0. (3.9)

Without this constraint, a single state could act as a source or a sink for probability because
the net flow of probability into site i would differ from the outward flow of probability.

Bearing this fact in mind, we see write the probability of a trajectory with empirical flow
q as

P [X(t)] = exp

(
−
∑
i,j

Wijρj

)∏
i,j

W
qij
ij . (3.10)

The exponential portion of the expression above accounts for the expected escape from
each site and the product in Eq. (3.10) accumulates the probability associated with each
transition.
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We now compare the probability of a trajectory with empirical flow q and empirical den-
sity ρ in the original measure and a tilted measure in which ρ and q are typical. Constructing
the biased measure is surprisingly simple. In fact, we need only replace the rates Wij with
the rates expected from the empirical flows qij, modifying the escape rates accordingly. Due
to the constraint, Eq. (3.9), once we have specified q, the empirical density for the trajectory
is uniquely specified.

Thus, the likelihood ratio of the two measures can be written as

P [X(t)]

P tilt[X(t)]
=

exp
(
−∑i,jWijρj

)
exp

(
−∑i,j qij

) ∏
i,j

(
Wijρj
qij

)qij
. (3.11)

It should be emphasized that the expression given in Eq. (3.11) is not a mathematically
rigorous one. To properly compare the path probabilities, one needs to employ more for-
mal tools from measure theory. In particular, the precise meaning of Eq. (3.11) must be
understood in terms of a Radon-Nikodym derivative. Further details of this mathematical
subtlety are discussed in Appendix A.

In the long time limit, the probability of the empirical density ρ and the empirical flow
q is dominated by the change of measure. That is, for trajectories X(t) satisfying the
constraints in Eq. (3.9),

P (ρ, q) =

∫
D[X(t)]P tilt[X(t)]

P [X(t)]

P tilt[X(t)]
δ(ρ[X(t)]− ρ)δ(q[X(t)]− q), (3.12)

=
exp

(
−∑i,jWijρj

)
exp

(
−∑i,j qij

) ∏
i,j

(
Wijρj
qij

)qij
. (3.13)

Because ρ and q are typical in the tilted distribution, the exponential scale fluctuations are
distributed as

P (ρ, q) = e−tobsI(ρ,q), (3.14)

where the large deviation function is just,

I(ρ, q) = log
P

P tilted
, (3.15)

=
∑
i,j

qij log
qij

Wijρj
− qij +Wijρj. (3.16)

The functional I(ρ, q) is known as the level-2.5 large deviation rate function [73–75].
Because the empirical flow contains all the information necessary to compute empirical

currents, we can extract the spectrum of current fluctuations from level-2.5 function. Using
the contraction principle Eq. (3.2), we see that

I(ρ, j) = inf
qij s.t. jij=qij−qji

I(ρ, q). (3.17)
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Note that, by convention, currents that are not consistent with the constraints in Eq. (3.9),
have I(ρ, j) =∞, which is also the case for I(ρ, q) when the flows are not conservative.

In the absence of dynamical phase transitions, the infimum defining I(ρ, j) can be com-
puted explicitly. In fact, the minimization involves only routine calculus; we express the rate
function

I(ρ, j) =
∑
i,j

Wijρj +Wjiρi − q∗ij − q∗ji + q∗ij ln
q∗ij

Wijρj
+ q∗ji ln

q∗ji
Wjiρi

, (3.18)

in terms of the minimizer

q∗ij = argminqijI(ρi, qij)− I(ρj, qji − jij) (3.19)

=
1

2

(
jij +

√
j2
ij + 4WijρjWjiρi

)
(3.20)

The functional form of I(ρ, j) already exposes a connection to the dissipation. This can be
further emphasized by writing the expression in terms of thermodynamic affinities [74].

A similar argument can be carried out for diffusion processes, like those described in
Section 1.1. In the case of diffusions, however, there is no distinction between the microscopic
empirical flow and the microscopic empirical current. The resulting functional, which can
also be viewed as a coarse-graining of Eq. (3.16), is a Gaussian functional

I[ρ, j] =

∫
dx

(j(x)− jss(x))2

4Dρ(x)
. (3.21)

In applications to nonequilibrium systems, Eq. (3.21) is sometimes called the macroscopic
fluctuation functional. It has been successfully used to study a variety of diffusive nonequi-
librium steady states [79].

3.2 Extending fluctuation-dissipation relations

beyond linear response

The large deviation results for current fluctuations described in the previous section hold
for nonequilibrium steady states arbitrarily far from equilibrium. As seen in Eq. (3.18),
the extent of nonequilibrium current fluctuations is mathematically tied to the steady-state
rate of dissipation. Maes and Netočny [67] argued that the level-2.5 formalism provided
a far-from-equilibrium generalization of the Onsager-Machlup approach. Indeed, the level-
2.5 rate function (3.18) asserts a relationship between the average dissipation and current
fluctuations, but, at first blush, it appears to be a complicated one.

Barato and Seifert [80] discovered a simple relationship between current fluctuations
and dissipation in the context of a statistical estimation problem. They investigated with
what certainty the average of a current-like observable could be measured in the context of
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enzyme kinetics. Under the assumption of linear response regime, they proved, that for any
conservative current j,

2(jss)2

var(j)
≤ σss, (3.22)

where σss is the steady-state entropy production of the process and jss is the steady-state
current. Their work initiated a body of research [62, 72, 81–86] concerning what has come
to be more generally understood as a generic relationship between current fluctuations and
dissipation in nonequilibrium steady states.

The bound (3.22) holds in remarkable generality. Gingrich et al. [85] proved that Eq. (3.22)
holds for nonequilibrium steady states arbitrarily far from equilibrium by appealing to the
level-2.5 rate function formalism. From Eq. (3.18) one can prove the uncertainty relation by
first evaluating I(ρ, j) at the steady state density, ρss. By the contraction principle, we know
that I(ρss, j) > I(j). Then, the quadratic upper bound Eq. 3.22 follows by demonstrating
that a quadratic bound holds on I(ρss, j). Ample numerical evidence for a wide variety of
nonequilibrium steady states was provided in Ref. [82], alongside proofs in some limiting
cases.

The uncertainty relation does not necessarily provide a tight bound. Gingrich, Rotskoff,
and Horowitz [62] addresses the problem of inferring the dissipation rate from coarse-grained
measurements of the current and explores when accurate inference can be performed. Of
course, when the thermodynamic affinities are small, the bound is tightest—consistent with
Gaussian form of Eq. (3.21). Efforts have been made to tighten the quadratic bound [84]
and to extend a weaker version to finite-time measurements, outside the large deviation
regime [86].

3.3 Time-dependent driving and stochastic pumping

The discussion of thermodynamic uncertainty and level-2.5 large deviations applies exclu-
sively to nonequilibrium steady states. Of course, many of the physical systems that we
would like to study do not fit into this category. Experiments in single molecule biophysics
often perturb proteins or DNA using time-dependent protocols to study their response [87–
89]. At the cellular scale, biological environments on the cellular scale are often subject to
oscillatory environmental conditions, a type of perturbation mimicked in laboratory experi-
ments [50].

In Markovian models of physical dynamics, each transition from one state to another
is modeled as a Poisson process, as described in detail in Sec. 1.1. Many physical systems
can be realistically represented by this dynamics due to the separation of timescales that
pervades chemical and biophysical processes. When a Markov process has a steady state
that breaks detailed balance, the physical system that it represents must be dissipative. The
energy flow that drives such a nonequilibrium dynamics is modeled implicitly—the stochastic
transition rates represent some random energy transfer process, for example, the statistics
of chemical reactions that catalyze a change of state and an asymmetry in time.
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Figure 3.1: The simplest realization of the stochastic pumping phenomenon. The dynamics
of a particle on the three state cycle is governed by a Poisson process with Arrhenius rates.
The energy levels and barrier heights can be varied periodically in time to generate a non-
zero average current through the system. The “no-pumping” theorem states that both a
barrier and an energy must be modulated periodically time to produce current.

Nonequilibrium behavior, of course, can be achieved by pumping energy into a physical
system with deterministic, external control. When we manipulate a physical system as a
function of time, the rates of transitions among the states become time-dependent. Such
systems are not purely Markovian and they do not relax to a time-independent steady state.

Consider, as an example of an externally driven system, a collection of energy levels with
barriers between them, as depicted schematically in Fig. 3.1. Currents can be generated even
in the case that the rates always satisfy detailed balance, a phenomenon known as stochastic
pumping. To see this, we can modulate the barrier heights and energy levels periodically in
time so that the Arrhenius rates are given by

Wij(t) = exp (Bij(t)− Ej(t)) . (3.23)

Note that for any fixed time t0, the rates satisfy detailed balance. As a result, if the protocol
were stopped at any point, the system would relax to an equilibrium state with no net
currents. In the case that the protocol is periodic, the system relaxes to a unique, time-
periodic nonequilibrium steady state with the same period as the protocol [90].

Stochastic pumps have been studied extensively and a number of deep results characterize
their dynamics. Among the most surprising is the “no-pumping” theorem [91–94], which
provides the minimal conditions on the external protocol for pumping a probability current
through the system. In the context of the model described above, the theorem asserts that
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at least one energy level Ei and one barrier Bij must be varied in time in order to achieve
non-vanishing currents. Mandal and Jarzynski [91] give a beautiful, straightforward proof
of this theorem.

3.4 Mapping time-dependent systems to

time-independent nonequilibrium steady states

Nonequilibrium steady states are an essential paradigm for describing nanoscale biological
machines, such as molecular motors that extract work from chemical gradients [95]. When
a system is coupled to reservoirs with different chemical potentials, the dynamics breaks
detailed balance and persistent, directed motion can be used to perform mechanical work.
Such a system is typically described as a Markov process with time-independent rates that
depend both on the external chemical gradient and internal dynamics.

Promising applications across many disciplines have motivated efforts to design artifi-
cial molecular machines that behave like those in biological settings. Nonequilibrium steady
states, however, have proved difficult to engineer [96]. Time-dependent external pertur-
bations offer an alternative route to breaking detailed balance. Indeed, many synthetic
nanoscale machines are implemented as “stochastic pumps,” in which currents are gener-
ated by periodically varying an external potential [94, 97–100]. A stochastic pump can be
modeled as a non-homogeneous Markov jump process with instantaneous Arrhenius rates
that are determined by time-dependent energy levels and barrier heights, as depicted in
Fig. 3.1 [91, 92, 101].

Raz et al. [101] proposed a mapping between time-independent steady states and periodi-
cally driven stochastic pumps that offers a set of design principles for engineering biomimetic
nanodevices. While the mapping ensures that the average properties are asymptotically
equivalent in both representations, it makes no guarantees about the fluctuations. At the
nanoscale, however, fluctuations play a crucial in determining characteristics like work and
efficiency in finite-time measurements [55, 57]. Indeed, fluctuations in both efficiency and
current have become a central focus in nonequilibrium statistical mechanics: theoretical de-
velopments have predicted universal properties of fluctuating nanoscale machines [57, 80, 85,
102] and experimental realizations of nanoscale engines have drawn particular attention to
the impact of fluctuations on measurements of efficiency [100, 103].

Translating between nonequilibrium steady states and stochastic pumps relies on the
so-called “dynamical equivalence principle” of Zia and Schmittmann [104]. This principle
stipulates that nonequilibrium steady states are characterized by the average currents and the
average density. For Markov jump processes, the asymptotic fluctuations of a nonequilibrium
steady state, however, are not dictated by these average properties alone.

The large deviation formalism of Section 3.1 suggests a stricter requirement for dynam-
ical equivalence among jump processes: if the asymptotic form of the fluctuations is to be
accurately captured, then it is not the average currents, but rather the average flows that
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Figure 3.2: (a) A schematic of the stochastic pump under consideration. Symmetric barriers
Bij and energy levels Ei parametrize Arrhenius rates and are varied periodically in time to
generate a current. The corresponding nonequilibrium steady state representation of the
pump has no time-dependence, but rather rates that break detailed balance. (b) The time
periodic steady state probabilities for each site on the graph are shown over an entire period
τ . The solid lines show the time-dependent occupation of the pump. The dashed lines show
the average occupancy per period, a property matched by the corresponding steady state.
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must be used to describe the dynamics of a nonequilibrium steady state. This is a more
rigid prescription. Further, these insights motivate a solution to the mapping problem be-
tween stochastic pumps and nonequilibrium steady states that preserves the fluctuations.
Interestingly, in order to optimally describe current fluctuations of a stochastic pump, the
corresponding nonequilibrium steady state must have a lower average entropy production
rate than that of the pump. The origin of this “excess” entropy production can be explained
with a simple decomposition of the entropy production of the stochastic pump [25, 53, 105].

The nonequilibrium steady state representation of the pump satisfies a universal lower
bound on the magnitude of its current fluctuations, dictated by the total entropy production
less the excess [81, 83, 85]. As a consequence of this splitting, we demonstrate that, in a
perturbative limit, stochastic pumps satisfy a universal bound on their current fluctuations,
dictated by the entropy production of the corresponding steady state. Taken together, these
insights offer a powerful set of design principles for translating between stochastic pumps
and steady states as well as a potentially useful technique for theoretical analysis of systems
under time-dependent driving.

To illustrate our mapping, we consider a simple model of a stochastic pump: a single
particle hopping with Arrhenius rates on a four state graph. We vary two energy levels
and one barrier periodically in time, which provides a time-dependent perturbation that
generates a non-vanishing current, as permitted by the no-pumping theorem [94, 98, 99].
This setup is depicted in Fig. 3.2 (a).

The pump achieves a periodic steady state, which can be calculated numerically by
integrating

pps
i (t+ s) =

∫ s

t

Wij(t+ t′)pps
j (t+ t′)dt′. (3.24)

Here pps
i (t) is the probability of being in state i at time t and W (t) is the continuous time

rate matrix for the dynamics at time t. The periodic steady state satisfies

pps
i (t+ τ) = pps

i (t), (3.25)

where τ is the period of the pumping protocol. Note that, by construction, W (t) satisfies
detailed balance at each point in time. The Arrhenius rates determine the instantaneous
rate matrix

Wij(t) = e−β
(
Bij(t)−Ej(t)

)
for i 6= j

Wii(t) = −
∑
i 6=j

Wij(t)

where Ej(t) denotes the energy level of state j and Bij(t) = Bji(t) is the barrier height. In
our example, the only time-dependent quantities are

E3(t) = sin(2πt/τ) + 1,

E4(t) = sin(4πt/τ),

B13(t) = sin(2πt/τ).

(3.26)
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The periodic solution is plotted in Fig. 3.2 (b).
We aim to find a time-independent rate matrix W ss that mimics the stochastic pump

and matches its fluctuations. Following [104], we let W ij = W ss
ij p̂j where p̂j is the average

occupancy in the periodic steady state and write

W ij = Sij +Aij, (3.27)

where S is a symmetric, stochastic matrix and A is an antisymmetric matrix. The symmetric
part of this decomposition is related to the “activity” of a trajectory [68, 106]. The continuous
time rate matrix for the dynamics is then given by

W ss = (S +A)P−1, (3.28)

where P is a diagonal matrix with Pii = p̂i, the steady state probability of site i. If we
further impose the constraint that the steady state currents agree with the periodic average
current along each edge,

ĵij =

∫ τ

0

dt Wij(t)p
ps
j (t)−Wji(t)p

ps
i (t), (3.29)

then the antisymmetric part of the rate matrix is uniquely identified,

Aij =
1

2
ĵij. (3.30)

The rate matrix W ss describes a probability conserving stochastic process, and, as a result,
the form of S is constrained, but only weakly. In particular, for i 6= j, it must be the case
that

Sij ≥ |Aij| (3.31)

and ∑
j

Sij = 0, (3.32)

which ensures that W ss is a stochastic matrix.
Though the rate matrix is not uniquely specified, any valid choice of S results in a

stochastic process with identical average currents and average occupancy statistics. The
same cannot be said for the fluctuations. The freedom in S can be directly represented by
noting that any valid off-diagonal entry in the matrix can be written,

Sij = cij|Aij|, cij > 1. (3.33)

Due to symmetry, there are N(N−1)/2 choices to make. Indeed, the rate matrices resulting
from different choices of S yield different average entropy production rates, given by,

σ̂ij = ĵij ln
cij|ĵij|+ ĵij

cij|ĵij| − ĵij
. (3.34)
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Figure 3.3: The large deviation rate function for the current around the upper cycle (see
Fig. 3.2) 1→ 2→ 3→ 1 is shown for the stochastic pump (blue) the nonequilibrium steady
state with the same average entropy production along each edge as the pump (green), and
the nonequilibrium steady state with the same average flow along each edge as the pump
(red dots). While the nonequilibrium steady state with S〈σ〉 has the same average current,
the character and extent of its fluctuations are extremely different. Choosing S〈q〉 preserves
even very rare fluctuations in current. The black dashed line shows the quadratic determined
by Eq. (3.22) with σss given by the steady state entropy production of the stochastic pump.

The cij values can be varied independently so long as they meet the constraint cij ≥ 1,
meaning that the total entropy production can be made arbitrarily small by taking cij large.

Raz et al. [101] suggest choosing S so that the average entropy production rate along each
edge is the same in the stochastic pump and the nonequilibrium steady state representations.
This choice, which we denote S〈σ〉 uniquely specifies a rate matrix and also guarantees that
the average current, occupancy, and entropy production rates are preserved by the map.
However, the asymptotic fluctuations in entropy production and current are dramatically
different.

To demonstrate this, we computed the entropy production and current large deviation
rate functions for both the stochastic pump and the nonequilibrium steady state representa-
tion, shown in Figs. 3.3 and 3.6. To calculate the rate functions, we first compute the scaled
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cumulant generating functions for entropy production ω and current j,

ψω(λ) = lim
t→∞

1

t
ln〈e−λω〉, ψj(s) = lim

t→∞

1

t
ln〈e−sj〉. (3.35)

For the nonequilibrium steady state representation, the cumulant generating functions can be
calculated exactly by Cramér tilting [32]. In the case of the stochastic pump, the averages
in (3.35) can be directly evaluated in the time-periodic steady state, meaning that the
cumulant generating function can be numerically computed as,

ψω(λ) =
1

τ
ln
∑
j

∫ τ

0

Wij(t;λ)pps
j (t), (3.36)

where W (t;λ) is the tilted rate matrix for entropy production [21]. We use the Gärtner-
Ellis theorem to compute the large deviation rate functions by first computing the scaled
cumulant generating function and then performing a Legendre-Fenchel transform [32].

Fig. 3.6 shows the entropy production rate function with W ss =
(
S〈σ〉 +A

)
P−1. Note

that, while the averages agree, the nature of the entropy production fluctuations is quite
different. The steady state with the matching average entropy production has a notably
thinner tail for large entropy production rates.

In order to match the fluctuations in current, we instead choose S so that the average
empirical flows are accurately captured by the dynamics. In particular, we let

S〈q〉 = q̂ij −
1

2
ĵij ⇐⇒ W ij = q̂ij, (3.37)

where q̂ij denotes the average flow along edge ij in the periodic steady state. This choice has
the additional advantage of simplicity: the dynamics produces the correct average number
of hops in both directions along each edge of the network. We note that for high-dimensional
networks, measuring all of the detailed edge currents or flows could be a formidable challenge.
Nevertheless, biological motors have been successfully modeled as Markov jump processes
with a small number of distinct ligation states [1] and engineered nanodevices typically
have only a few states [107]. Because S does not affect the antisymmetric part of the rate
matrix, the average currents along each edge are equivalent in both the stochastic pump and
the nonequilibrium steady state. As illustrated by Fig. 3.3 choosing S〈q〉 leads to striking
agreement between the current fluctuations of the stochastic pump and the corresponding
steady state.

3.5 Monte Carlo sampling

To probe the rate of convergence of the large deviation form for current fluctuations in both
the pump and the nonequilibrium steady state, we simulated the dynamics using kinetic
Monte Carlo (KMC) sampling. In the case of the nonequilibrium steady state, standard
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algorithms can be employed [108, 109]. However, the procedure must be modified slightly
to sample the pump, where the rates are time dependent. To perform the simulations, we
follow Ref. [110]. We note that the probability of escape from state i in time ∆t is,

exp

(
−
∫ t+∆t

t

Wii(t)dt

)
. (3.38)

Thus, we choose a random number r ∈ (0, 1] and compute ∆t by numerically solving the
following equation,

ln(r) = −
∫ t+∆t

t

Wii(t)dt. (3.39)

Once ∆t is determined, a new state is selected in proportion to the flow from the current
state into the new state. Consider an ordered list of the rates at time t + ∆t, i.e., {Wji}j 6=i
with Wji < W(j+1)i for all j. We define

Rji(t+ ∆t) =

j∑
k=1

Wki(t+ ∆t). (3.40)

Next, we choose a random number r′ ∈ (0, 1] and perform a binary search to determine j
such that,

Rji(t+ ∆t) ≤ r′Wii(t+ ∆t) ≤ R(j+1)i(t+ ∆t). (3.41)

We collected 1 × 106 independent trajectories for both the stochastic pump and the
nonequilibrium steady state representations with an observation time tobs = 1000. We com-
puted the scalar current j around the cycle 1 → 2 → 3 → 1 and plotted −1/tobs ln psim(j).
The results, as shown in Fig. 3.4, are in good agreement with the asymptotic form of the rate
function. The modest timescale over which the large deviation form is adopted emphasizes
the practical implications of these predictions.

3.6 Effective stationary process

The time-periodic master equation can be written,

∂tpi(t) =
∑
j

Wij(t)pj(t),

pi(0) = pinit
i .

(3.42)

The rates are assumed to vary periodically in time with period τ so that Wij(t+τ) = Wij(t).
This equation admits a formal solution using the time-ordered exponential operator −→exp,

p(t+ ∆t) = −→exp

(∫ t+∆t

t

dt′ W (t′)

)
p(t), (3.43)

≡ G(t, t+ ∆t)p(t). (3.44)
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Figure 3.4: Results from kinetic Monte Carlo sampling show good agreement with the asymp-
totic limit for the stochastic pump. The nonequilibrium steady state simulations use the rate
matrix determined by S〈q〉. The KMC data for the stochastic pump was sampled with the
Monte Carlo procedure described in the Section 3.5.

At long times, the solution becomes periodic, up to an exponential factor called the Floquet
multiplier. In our case, there are no sources or sinks for the probability, so the exponents
vanish (cf. Ref. [90]). The propagator G(t, t′) is itself a periodic function of time by Floquet’s
theorem. Further, by the semi-group property,

G(0, nτ) = Gn(0, τ) ≡ Gn(τ). (3.45)

In the long time limit, G(τ) is discrete time rate matrix that propagates probability through
the network. By the law of large numbers, the average flow qeff

ij along each edge determined
by G must match the average in the periodic steady state q̂ij. This correspondence is exact.

It remains to compare the current fluctuations of the non-homogeneous Markov process
with current fluctuations in the effective process. A correspondence between the nonequilib-
rium steady state and pump will hold in the long time limit if the deviations from Poisson
statistics determined by the periodic averages can be neglected. We consider the Fourier
representation of the periodic dynamics in its periodic steady state; the right hand side of
Eq. (3.42) becomes ∑

j

∑
k,l

W̃ij(k − l)p̃ps
j (l)e2πikt. (3.46)
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Figure 3.5: (a) The periodic steady state plotted over the duration of a single period for
energy variations of amplitude 1kBT . (b) The periodic steady state plotted over the duration
of a single period for energy variations of amplitude 5kBT . (c) The current large deviation
rate function of the stochastic pump with energy variations of amplitude 1kBT compared
with the current rate functions for the two coarse-grained representations. (d) The current
large deviation rate function of the stochastic pump with energy variations of amplitude
5kBT compared with the current rate functions for the two coarse-grained representations.

If the time-periodic perturbation to the hopping rates is small, then we can neglect the
higher Fourier coefficients and retain only the k = 0 contribution,∑

j

W̃ij(0)
∑
l

p̃ps
j (l)e2πilt, (3.47)

=
∑
j

Ŵijp
ps
j (t). (3.48)

Because W̃ij(0) is the time periodic average, the transition rates are given by the average rate
of hopping over the course of the period. The fluctuations, in this case, will be dominated by
the long-time properties of G. Empirically, the pump rate functions show robust agreement
with the nonequilibrium steady state representation for a wide range of different pumping
protocols and networks. However, this perturbative limit can be broken with strong variation
in the energy.
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Figure 3.6: The large deviation rate functions for entropy production reveal that the steady
state that recapitulates the current fluctuations has a smaller average entropy production.
Furthermore, the extent of entropy production fluctuations in the corresponding steady
state is much less pronounced. S〈σ〉, on the other hand, leads to greatly enhanced entropy
production fluctuations.

3.7 Excess entropy production

With the choice of S〈q〉, both the average entropy production rate and its fluctuations in the
nonequilibrium steady state representation differ markedly from the corresponding stochastic
pump, as shown in Fig. 3.6. The “excess” entropy production has a physical origin and
can be explained with a natural decomposition of the stochastic pump entropy production.
Unlike nonequilibrium steady states, which can only produce entropy around closed cycles,
stochastic pumps can produce entropy without completing a cycle [53]. We decompose the
total stochastic pump entropy production rate into a contribution from the steady state,
akin to the “housekeeping heat”, and the excess associated with the pumping protocol [25,
105],

σpump = σss + σex, (3.49)

where,

σss
ij = ĵij ln

q̂ij
q̂ji
, (3.50)
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and

σex
ij =

1

τ

∫ τ

0

jij

(
ln
qij
qji
− ln

q̂ij
q̂ji

)
. (3.51)

The second law of thermodynamics ensures that both σpump and σss are non-negative on
average. This decomposition is analogous to the decomposition of entropy production used
to describe the “housekeeping heat”, i.e., the amount of heat required to maintain a nonequi-
librium steady state [25, 53, 105].

The excess entropy produced by the stochastic pump, σex is also non-negative. The
inequality

1

τ

∫ τ

0

jij ln
qij
qji
≥ ĵij ln

q̂ij
q̂ji
, (3.52)

is known as the log-sum inequality and follows directly from Jensen’s inequality, because
qij(t) > 0 and x lnx is a convex function [111]. In the adiabatic limit, the system remains in
the instantaneous equilibrium distribution and σex vanishes. In this limiting case, S〈σ〉 = S〈q〉.
That is, for slow driving, entropy is only produced in the long time limit if probability is
pumped through the network on average. While one might hope to match both the current
and entropy production fluctuations when mapping a stochastic pump to a nonequilibrium
steady state, or vice versa, this can only be achieved if the pumping protocol is adiabatic.
As a consequence, in the inverse mapping problem, a pump protocol cannot generally be
designed to mimic both current and entropy production fluctuations because the average
entropy productions only agree in the adiabatic limit. Choosing the time-independent rate
matrix so that it gives the steady state entropy production of the stochastic pump, that
is, choosing S〈q〉, yields a coarse-graining that is consistent with the physical mechanism by
which entropy is produced in the pump.

In a stochastic pump, the hopping statistics along each edge need not be Poissonian, even
in the adiabatic limit [112]. Therefore, the instantaneous dynamics of the nonequilibrium
steady state, for which all transitions are purely Poissonian, may not perfectly recapitulate
the behavior of the pump. The mapping determined by the choice (3.37) yields a universal
bound on current fluctuations in weakly driven stochastic pumps, akin to the thermody-
namic uncertainty relations recently discovered for nonequilibrium steady states [62, 81–83,
85]. Distinct behavior can be achieved with random driving: Barato and Seifert recently
showed that, through the use of a driving protocol that changes at stochastic times, cur-
rent fluctuations can be suppressed without incurring significant dissipation [113]. For the
deterministic protocols considered here, in the perturbative limit, the rate function for any
generalized current j is subject to a quadratic bound determined by the steady state entropy
production rate

Ipump(j) ≤ (j − ĵ)2

4ĵ2/σss
. (3.53)

The bound is tighter than the quadratic function of the full entropy production because
incorporating the excess entropy production only reduces the curvature of the quadratic
form. The lack of Poisson statistics for the pump suggests that the bound does not follow
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from level-2.5 large deviation in all cases, but numerical evidence demonstrates that it is
quite robust.
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Chapter 4

The geometry of near equilibrium
response

When a physical system is perturbed only slightly away from its equilibrium state, its re-
sponse is determined by equilibrium fluctuations. The relationship between fluctuations
and response is made explicit in the fluctuation-dissipation theorem discussed in detail in
Chapter 3. When the external drive is sufficiently weak, the response function is deter-
mined by the covariance and time correlations of the perturbed system. Higher cumulants
of the system’s fluctuations can be neglected and the dissipation is entirely determined by
Gaussian statistics. The mathematical properties of this spectrum of fluctuations enable a
compelling mathematical analogy: In this limit, we can take advantage of connections with
Riemannian geometry and statistical estimation theory to predict the response to complex,
time-dependent external perturbations.

4.1 Geometry and statistical estimation

The free energies that we often wish to measure in physical chemistry and biophysics have a
natural relation to normalization constants in statistics, as discussed in the Introduction 1.
The problem of computing a free energy difference between two thermodynamic states of a
physical system can be viewed, in this light, as a statistical estimation problem. The free
energy difference between two thermodynamic states is

− β∆F = ln
Z
(
λ(t)

)
Z
(
λ(0)

) , (4.1)

where λ is a vector of coupling parameters specifying the state, e.g., temperature, pres-
sure, and particle number. To provide a procedure for estimating ∆F , we can rewrite this
expression using the trivial equality

∆F =

∫ t

0

dτ
d

dt
lnZ

(
λ(τ)

)
. (4.2)
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The free energy difference does not depend on the path of λ, because it is a state function.
However, an estimate of ∆F , which we denote by ∆̂F , will, in general, depend on the path,
which we call a “protocol”. The derivative of the free energy with respect to the protocol
time is related to an equilibrium average of the response to changes in the control parameters

d

dt
lnZ

(
λ(τ)

)
= −

〈
∂βE

∂λi

〉
λ̇i. (4.3)

The repeated indices are summed, a convention used throughout this chapter. This equality
indicates that we can write an unbiased estimator for the free energy difference

∆̂F = −
∫ t

0

dτ N−1

N∑
j=1

(
∂βE

∂λi

)(j)

λ̇i. (4.4)

Operationally, the scheme described here is similar to thermodynamic integration [41].

The fact that the estimator is unbiased, meaning that
〈

∆̂F
〉

= ∆F is a desirable prop-

erty, but the optimal estimator will additionally minimize the variance. The variance of the
estimator 〈(

∆̂F
)2
〉
− (∆F )2 (4.5)

depends on the protocol λ(t). We want to minimize the average variance over all possible
choices of protocol. This quantity is strictly positive, so we seek to minimize it directly.
Explicitly, the term to be minimized is〈(

∆̂F
)2
〉
− (∆F )2 =

∫ t

0

dτ λ̇i

(〈
∂βE

∂λi

∂βE

∂λj

〉
−
〈
∂βE

∂λi

〉〈
∂βE

∂λj

〉)
λ̇j. (4.6)

The expression inside the average is symmetric under exchange of i and j and is positive
semi-definite. We can rewrite it as

gij(λ) = 〈δX iδXj〉λ (4.7)

where the quantity δX defines the deviation of the response field from its average value,

δXi =

(
∂βE

∂λi

)
−
〈
∂βE

∂λi

〉
. (4.8)

The tensor gij(λ) defines a Riemannian metric on the space of protocols, specifying the
geometric distortion of the protocol manifold at each value of the control parameters. The
meaning of this tensor and its use in nonequilibrium protocol optimization will be the focus
of this chapter. The choices of λ(t) that minimize Eq. (4.7) are geodesics on the manifold of
control parameters. This metric, which endows the space of protocols with an intrinsic geo-
metric structure, turns out to have a much deeper connection to statistical mechanics. As we
will see throughout the next two Chapters, we can leverage generalizations of the minimum
variance statistical estimator to determine minimum dissipation protocols for nonequilibrium
control.
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4.2 Thermodynamic length

The Gaussian spectrum of equilibrium fluctuations about each thermodynamic state asso-
ciates with that state a metric tensor, analogous to the Fisher information metric of Eq. (4.7).
The geometric interpretation of the manifold of thermodynamic states was initiated in the
1970s in Refs. [114, 115], which highlighted the mathematical parallels between thermody-
namics and Riemannian geometry. Salamon and Berry [47] and Schlögl [116] later applied
geometric thermodynamics to study macroscopic nonequilibrium systems. It should be noted
that many of the essential ingredients necessary to analyze such problems geometrically can
be found in the seminal work of Onsager and Machlup on irreversible processes [43, 44].

In applications to nonequilibrium systems, we investigate the response to changes in a
vector of external control parameters. Throughout, we consider control parameters λ ∈ Rd

which couple linearly to observables X = −∇λβE(x,λ), where x is a configuration variable
in Rn. Generally, we will consider changes the control parameters in a deterministic fash-
ion λ(t) : [0, tobs] → Rd as a means to transform the system between two thermodynamic
states. This metric defined in Eq. (4.7) directly quantifies the dissipation in the “endore-
versible” limit, which stipulates that the system remains at all times in an equilibrium state,
though not necessarily the equilibrium state given by the instantaneous value of the control
parameters [47].

The connections between the Riemannian geometry of thermodynamics and the Fisher
information metric were explored in Ref. [117], which also emphasized the relationship to
estimating free energies with the Bennett Acceptance Ratio method. Sivak and Crooks [118]
revisited the endoreversibility assumption and argued that the metric should include addi-
tional time correlations (cf. Eq. (4.12)) to properly account for lag in the linear response
regime. The formalism of thermodynamic length has been applied to control problems in ana-
lytically tractable models, where metric can be computed exactly [119]. In most applications
to physical systems, however, a closed form expression for the metric tensor (4.12) cannot
be derived. Chapter 5 describes computational approaches to determining the geodesic min-
imum dissipation protocol when the thermodynamic metric must be estimated by sampling
the dynamics.

An explicit form for the thermodynamic metric can be derived by minimizing, over all
possible protocols with fixed endpoints, the average excess work done in the course of the
transformation. In Sec. 4.3 we prove that the minimum dissipation protocol is a geodesic
on the manifold of control parameter values when the rate of driving is slow relative to the
dynamics. We consider a system with coordinates x ∈ Rd and control the system with a
time-dependent, nonequilibrium protocol λ(t) = (λ1(t), . . . , λN(t)) ∈ RN , t ∈ [0, tobs], for
some tobs > 0. As we will see below our results will be independent of tobs provided that the
protocol is slow relative to the dynamics of x. We assume that we can independently tune
the components of λ, which we refer to as the “control parameters”. The dynamics of the
system is governed by an overdamped Langevin equation with a time-dependent potential
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V that depends parametrically on the protocol

ẋ = −1

ε
∇V

(
x(t),λ(t)

)
+

√
2

βε
η(t). (4.9)

The reciprocal temperature is denoted by β and η(t) is Gaussian random noise with zero
mean and covariance 〈ηi(t) ηj(t′)〉 = δijδ(t − t′). The parameter ε � 1 is proportional to
the friction coefficient for the dynamics of the system and sets a separation of timescales
between the system and the protocol: when ε is small the dynamics of the underlying system
x(t) are much faster than the changes in protocol λ(t).

An optimal protocol λ(t) minimizes the average microscopic work 〈Wε〉, where the expec-
tation, denoted 〈·〉, is performed over stochastic trajectories x(t) which begin in equilibrium.
In the limit of infinitely slow driving, the system remains in equilibrium at every point in
time and the transformation is thermodynamically reversible. If the system is driven by
the protocol at a finite rate, then work must be done and a positive amount of energy is
dissipated on average. For a fixed, deterministic protocol λ(t), the heat absorbed by the
bath can be computed as a stochastic integral [120],

W̃ε = −ε−1

∫ tobs

0

∇V
(
x(t),λ(t)

)
◦ dx(t), (4.10)

where ◦ denotes the time-symmetric Stratonovich product, described in detail in Appendix A.
The expression for the heat (4.10) can be related to the familiar stochastic thermodynamic
expression for work,

Wε = ε−1

∫ tobs

0

∂λV
(
x(t),λ(t)

)
· λ̇ dt, (4.11)

by noting that dV
(
x(t),λ(t)

)
= ∇V

(
x(t),λ(t)

)
◦ dx(t) + ∂λV

(
x(t),λ(t)

)
· λ̇ dt and inte-

grating by parts. The quantity W̃ε differs from Wε by a boundary term, which does not
depend on the protocol itself but only its endpoints. Its contribution to the overall cost
of control is fixed, and therefore can be ignored in our optimization problem. It should be
noted, however, that the boundary term could still make a very significant contribution to
the dissipation when the duration of the protocol is finite.

In Sec. 4.3 we prove that, in the limit of small ε, a natural metric for the dissipation
along a fixed protocol λ(t) emerges. This metric has the form of a friction tensor [118] and
quantifies the energetic cost of driving the system,

ζ(λ) =

∫ ∞
0

dτ
〈
δX
(
x,λ

)
δXT

(
xλ(τ),λ

)〉
λ
, (4.12)

where X(x,λ) ≡ −β∂λV (x,λ) and xλ(τ) denotes the solution to (4.9) using the rescaled
time τ = t/ε and keeping the control parameters λ fixed. The notation 〈·〉λ denotes an
equilibrium average with the control parameters λ fixed, as well. In particular, it should
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be noted that x is initially drawn from and samples an equilibrium distribution in the
expectation above. The length functional is then given by,

L[λ] =

∫ tobs

0

dt

√
λ̇
T
ζ
(
λ(t)

)
λ̇, (4.13)

and this length is independent of the parameterization of λ(t) as well as tobs, which we could
set to tobs = 1. If we impose the constraint of constant speed along the protocol, then it
suffices to perform a minimization over the energy functional E [λ], in which the integrand
lacks the square root term, see (4.26).

To perform this minimization, we start with the Euler-Lagrange equation for the geodesic
minimizing (4.13). Written componentwise, this equation reads

d

dt

(
ζkjλ̇j

)
=

1

2
λ̇i

∂

∂λk
ζijλ̇j

⇔ ζkjλ̈j +
∂ζkj
∂λi

λ̇jλ̇i −
1

2

∂ζij
∂λk

λ̇iλ̇j = 0. (4.14)

At this point, we can take advantage of the symmetry in the cumulants. When the relaxation
time is constant, the metric is proportional to the Fisher information metric. As a result, the
derivatives of the metric correspond to time-scaled third cumulants and are invariant under
the permutation of indices. Under this assumption, the expression (4.14) simplifies as,

ζkjλ̈j +
1

2

∂ζij
∂λk

λ̇iλ̇j = 0. (4.15)

which we will write compactly using vectorial notation as ζλ̈+ 1
2
∂λζ : λ̇λ̇ = 0.

With this geometric perspective, we can efficiently compute minimum dissipation pro-
tocols using minimum action methods [121, 122]. In Chapter 5, we detail an algorithm
that iteratively updates a trial nonequilibrium protocol and converges to the optimum. The
update step depends only on fluctuations in the equilibrium dynamics at points along the
protocol. The principal advantage of this method over alternative numerical approaches
is its computational power, remaining robust even when the protocol spaces are very high
dimensional.

4.3 Derivation of the thermodynamic metric

The expression (4.11) defines the work done on the system for a single realization of its
stochastic dynamics. When there are substantial fluctuations in the microscopic variables
x, the work Wε itself is a fluctuating quantity, as Eq. (4.11) depends on the dynamics. To
identify an efficient protocol, we want to find a λ(t) that minimizes the average dissipation, as
opposed to focusing on rare trajectories of the controlled system x(t) that yield anomalously
low dissipation. To compute the average over trajectories, we introduce an undetermined
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configurational distribution ρ(x, t), which varies with time throughout the duration of the
protocol,

〈Wε〉 =

∫ tobs

0

∫
Rd
dt dx ∂λV

(
x,λ(t)

)
· λ̇ ρ(x, t). (4.16)

The distribution ρ satisfies a Fokker-Planck equation associated with the Langevin equa-
tion (4.9),

∂tρ = ε−1∇ ·
(
∇V

(
x,λ(t)

)
ρ+ β−1∇ρ

)
. (4.17)

Because the driving is slow (ε� 1), we expand ρ around the equilibrium distribution,

ρ0(x, t) = Z
(
λ(t)

)−1
e−βV (x,λ(t)), (4.18)

at each point along the protocol,

ρ(x, t) = ρ0(x, t)
(
1 + εφ(x, t) +O(ε2)

)
(4.19)

where Z(λ) =
∫
Rd dx e

−βV (x,λ) denotes the partition function for a fixed value of the control
vector λ. Using this expansion in the Fokker-Planck equation (4.17) we find that the order
ε correction φ satisfies

∂t ln ρ0(x, t) = ∇V
(
x,λ(t)

)
·∇φ(x, t) + β−1∆φ(x, t). (4.20)

The left hand side of (4.20) is explicitly

∂t ln ρ0(x, t) = β
(
−∂λV

(
x,λ(t)

)
· λ̇+ ∂λF

(
λ(t)

)
· λ̇
)

(4.21)

=≡ −βδX(x,λ(t)) · λ̇, (4.22)

where F (λ) denotes the free energy −β−1 lnZ(λ). The solution to the differential equa-
tion (4.20) can be expressed via the Feynman-Kac formula as an average over a virtual fast
process xλ(τ) in which the control parameters are kept at a fixed value λ. The process xλ(τ)
satisfies an overdamped equation of motion, with the initial condition xλ(0) = x,

d

dτ
xλ(τ) = −∇V (xλ(τ),λ) +

√
2

β
η(t). (4.23)

Denoting by 〈·〉λ an expectation taken over this process with the initial condition as above,
we have,

φ(x, t) = −β
(∫ ∞

0

dτ
〈
δX(xλ(t)(τ),λ(t))

〉
λ(t)

)
· λ̇(t). (4.24)

The solution for φ(x, t) gives us an explicit expression for the configurational density (4.19)
up to order ε,

ρ(x, t) = Z−1(λ(t))e−βV (x,λ(t))×
(

1− εβ
(∫ ∞

0

dτ
〈
δX(xλ(t)(τ),λ(t))

〉
λ(t)

)
· λ̇(t)

)
+O(ε2).

(4.25)
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With this expression for the configurational distribution ρ we can compute the average excess
microscopic work (4.16). The ε0 term is just the free energy difference between the initial
and final points of the protocol, and thus has no path dependence. The work performed
on the system in excess of that required to overcome the free energy difference at the end
points of the protocol is quantified by the higher order terms of 〈Wε〉. The leading order
contribution can be expressed as

E [λ] = β

∫ tobs

0

dt λ̇
T
ζ(λ(t))λ̇, (4.26)

where ζ(λ) is the tensor we defined in (4.12). This tensor is a positive semi-definite, sym-
metric, bilinear form, meaning that it defines a semi-Riemannian metric on the space of
nonequilibrium protocols. The metric is related to Kirkwood’s linear-response formulation
of the friction tensor and can be interpreted as quantifying resistance to changes in the con-
trol parameters [63, 118]. Minimizing the length of a protocol with respect to the metric ζ
minimizes the excess work, meaning that geodesics in this space are minimum dissipation
protocols [117, 118]. One advantage of this “geometric” description is that the time over
which the protocol does not alter it, so long as the separation of timescales between the
dynamics and control is maintained. However, because the excess work scales inversely with
the duration of the protocol [118], smaller values of tobs lead to higher average dissipation.

In what follows, we have made the additional simplification that the Green-Kubo integral
in (4.12) can be approximated as a covariance multiplied by an effective timescale τeff, that
is,

ζ(λ) =

∫ ∞
0

〈
δX(0)δXT (t)

〉
λ
dt

≈ τeff

〈
δX(0)δXT (0)

〉
λ
. (4.27)

We need not make the approximation (4.27), but doing so simplifies the algorithm. We
employ this simplified variant throughout Chapter 5, an assumption justified in the examples
we consider.

4.4 Connection between thermodynamic metrics and

stochastic optimal control

Consider a system with coordinates X ∈ Rn. An external protocol λ : [0, tobs]→ Rd is used
to control the system as function of time. The dynamics of X under the control of the
protocol λ is governed by a stochastic differential equation,

dXt = f(Xt, λt, t)dt+ dξt, (4.28)

where f is a drift function and dξ is a Wiener process with 〈dξidξj〉 = Dijdt.
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We associate a cost function C(X0;λ) with this control problem and define it as a sum of
the cost to reach some target at time tobs and the cost of the dynamics along the trajectory,

C(Xt;λ, t, tobs) =
〈
φ
(
X(tobs)

)
+

∫ tobs

t

R(Xτ , λτ , τ)dτ
〉
Xt
, (4.29)

where 〈·〉Xt denotes an average over trajectories that begin at Xt at time t. The optimal cost
associated with some transformation is the cost associated with the optimal protocol,

J(Xt, t) = min
λ
C(Xt;λ, t, tobs). (4.30)

Bellman’s principle of dynamic programming [123] says that an optimal protocol starting
from any initial condition must remain optimal. This observation allows us to write a
recursive equation for the optimal cost function J,

J(Xt, t) = min
u
R(Xt, λt, t) + 〈J(Xt+dt, t+ dt)〉Xt . (4.31)

Performing a Taylor expansion inX and t yields a stochastic version of the classical Hamilton-
Jacobi-Bellman equation,

〈J(Xt+dt, t+ dt)〉Xt = J(Xt, t) + ∂tJ(Xt, t) +∇J(Xt, t)〈dX〉Xt +∇2J(Xt, t)〈dX2〉Xt
(4.32)

= J(Xt, t) + ∂tJ(Xt, t) dt+∇J(Xt, t) · f(Xt, λt, t) dt+
1

2
∇2J(Xt, t) : D dt+O(dt2),

(4.33)

noting that 〈dX2〉 is a stochastic increment of order dt so must be retained in the expansion
(cf. Appendix A). Using this equation in (4.31), we get a differential equation for the optimal
cost function,

− ∂tJ(Xt, t) = min
u
R(Xt, λt, t) +∇J(Xt, t) · f(Xt, λt, t) dt+

1

2
∇2J(Xt, t) : D dt, (4.34)

which is known as the Hamilton-Jacobi-Bellman equation. The notation A : B denotes the
dyadic product of the matrices A and B.

Solving the nonlinear stochastic partial differential equation (4.34) is a formidable task.
However, in special cases, some progress can be made. An important special case is that of
“path integral” control, in which the cost function has the following form,

C(Xt;λ, t, tobs) =
〈
φ
(
X(tobs)

)
+

∫ tobs

t

λT
τ ζλτ + V (Xτ , τ)dτ

〉
Xt
. (4.35)

The control parameters appear as a quadratic cost in the integral. We further assume
that the controls couple linearly into the dynamics of the system. This means that we can
write (4.28) as,

dXt =
(
f(Xt, t) + λt

)
dt+ dξt, (4.36)
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and the minimization in (4.34) can be solved explicitly as,

λ∗t = −ζ−1∇J(Xt, t). (4.37)

Under these assumptions, it is possible to linearize the Hamilton-Jacobi-Bellman equa-
tion, using a Cole-Hopf transformation. We let,

J(Xt, t) = −γ logψ(Xt, t), (4.38)

so that,

λ
∂tψ

ψ
= −1

2
γ2ζ−1 :

(∇ψ
ψ

)T(∇ψ
ψ

)
−γfT∇ψ

ψ
+

1

2
γD :

[
∇2ψ

ψ
−
(∇ψ
ψ

)T(∇ψ
ψ

)]
. (4.39)

As pointed out by Kappen (cf., Refs. [124, 125]), the nonlinearity vanishes if there exists a
scalar γ such that,

γζ−1 = D. (4.40)

equivalently, when the cost of control is proportional to the inverse diffusion tensor, the
optimal cost satisfies a linearized Hamilton-Jacobi-Bellman equation.

4.5 The dynamical Riemannian geometry of the Ising

model

While studying model systems helps us glean the general principles of non-equilibrium con-
trol, theoretical analysis has thus far been restricted to single-body systems with exactly
solvable dynamics [119, 126–129] or in which the dynamics is not incorporated [130, 131].
For most systems of interest we cannot compute the metric (4.12) exactly. Thus, we must
develop a general method to predict optimal protocols from incomplete knowledge of the
metric tensor, often relying on numerical estimates.

The Ising model is a cornerstone of statistical mechanics that captures the essential
physics of a diverse set of systems including ferromagnets, liquid-vapor phase transitions,
and lipid membranes [132, 133]. With this example, we gain insight into the unexplored
consequences of non-linear dynamics and the presence of a phase transition on optimal pro-
tocols. Control can be exercised by applying an external field, but also by varying the spin-
spin coupling, as in heat assisted magnetic recording [134]. Applications include magnetic
information storage technologies that rely on inverting the net magnetization of microscopic
spin domains as well as technologies for ultra low energy computation, such as hybrid spin-
tronics [135]. Low dissipation control of seemingly simple, stochastic systems, such as spins
on a magnetic hard drive, has implications for the efficiency of nanodevices already in wide
use.

As an illustrative example and proof of practical significance, we will consider the prob-
lem of inverting the net magnetization of the 2D Ising model using the spin-spin coupling
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Figure 4.1: The caloric (a), magneto-caloric (b), and magnetic (c) friction coefficients of the
2D Ising model, as defined by Eq. (4.12), plotted in the magnetic field (h), temperature
T = 1/βJ plane. Both relaxation times and static correlations diverge at the critical point
which gives rise to the cusp in each of these plots. The friction coefficients are the matrix
elements of a Riemannian metric with the property that geodesics minimize the average
excess work that a protocol exercises over the system.

and external field as control parameters. The system is governed by the standard Ising
Hamiltonian,

H = h(t)
n∑
i=1

si + J(t)
∑
〈i,j〉

sisj , (4.41)

where 〈i, j〉 denotes a sum over all nearest neighbor pairs on the lattice, and the control
parameter λ(t) =

(
βh(t), βJ(t)

)
, varies the coupling, J , and the external magnetic field, h,

with time. Controlling the strength of the spin-spin coupling can also be implemented by
varying the temperature.
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If we drive at a finite rate the system resists the changes in the control parameters. In
the linear regime, the friction ζ that the protocol encounters is given by Eq. (4.12). When
we control the field and coupling, the conjugate forces are the net magnetization M and
internal energy E,

Xβh(t) =
n∑
i=1

si ≡M, (4.42)

XβJ(t) =
∑
〈i,j〉

sisj ≡ E. (4.43)

Similar expressions for the friction (4.12) arise in Kirkwood’s linear response formula [63,
118] and also in the study of effective diffusion constants under coarse-graining [136]. The
metric defines the distance along a protocol λ,

L[λ(t)] =

∫
λ

√
λ̇iζijλ̇j, (4.44)

and the distance along an optimal protocol sets a lower bound on the excess work exercised
by the controller over the system [47, 118],

∆t〈Wex〉 ≥ L2. (4.45)

For any protocol, equality between the divergence ∆t〈Wex〉 and the squared thermody-
namic length L2 is achieved when the excess power is constant over the duration of the
protocol. As a result, the path of an optimal protocol does not depend its duration [47,
117]. Exact equations for the relaxation of M and E are not known in general, so we must
approximate the metric using simulations. We discretize the parameter space and at each
point we compute the time correlation matrix for the conjugate forces,(〈

δXβh(0) δXβh(τ)
〉 〈

δXβh(0) δXβJ(τ)
〉〈

δXβJ(0) δXβh(τ)
〉 〈

δXβJ(0) δXβJ(τ)
〉) . (4.46)

The time correlation functions are estimated with Markov Chain Monte Carlo simulations
on a 128 by 128 square lattice of Ising spins with Glauber dynamics [137]. We compared our
results to a 256 by 256 system to ensure there were no significant finite size effects, aside from
finite size scaling. Integrating the time correlation function (4.46) to infinite time yields the
friction coefficient ζij (4.12) at each point in the parameter space. In practice, correlations
decay exponentially and the friction tensor can be accurately estimated, except very near
the critical point.

Once the metric is known on a subspace of the parameter manifold, we recast the problem
of approximating geodesic distances in terms of an eikonal equation, a partial differential
equation commonly used to study wave propagation [138], as discussed further in Chapter 5.

In Fig. 4.1 we plot each of the components of the friction tensor. The caloric friction
coefficient ζEE is the time autocorrelation of the internal energy. At each point in param-
eter space, this friction can be written as ζEE = τEE〈(δE)2〉 = τEEkBT

2C, the product of
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the heat capacity C and an effective timescale for the relaxation of the energy. Similarly,
the cross-correlation of the magnetization and internal energy, the magneto-caloric friction
ζME = ζEM = τEMkBTMt is proportional to the magneto-caloric coefficient Mt, and the
autocorrelation of the magnetization, the magnetic friction ζMM = τMMχ is proportional to
the magnetic susceptibility χ.

Both static correlations and relaxation timescales diverge near the critical point of the
Ising model. These two effects compound to produce a singularity of the metric where all
three components of friction tensor also diverge. The friction coefficients decay according to
characteristic power laws in neighborhoods surrounding the critical point [139]. Correlations
are also large exactly at the first order phase transition along the line h = 0, T < TC.
However, spontaneous magnetization reversal is rarely observed in simulations under single
spin flip dynamics. Below the critical temperature TC with h 6= 0, relaxation times are
fast and fluctuations are negligible, which results in small values for each component of the
friction tensor.

The geometry of the supercritical region is more intricate. The caloric friction, Fig. 4.1 (a),
exhibits symmetric ridges that correspond to maxima in the heat capacity and are reminis-
cent of “Widom lines” in supercritical fluids [140]. Along these ridges we observe large, slowly
relaxing spin domains. The magneto-caloric friction, Fig. 4.1 (b), is antisymmetric about
h = 0 due to the antisymmetry in the net magnetization. The magnetic friction, Fig. 4.1 (c),
is large for an extended region above the critical temperature. At very high temperatures,
all the components of the metric are again small due to negligible spin-spin couplings. The
large diagonal elements of the metric along these supercritical lines are indicative of a high
dissipative cost associated with control.

The form on an optimal protocols depends, of course, on what we can control. For
instance, given spatial control of the external field, the minimum dissipation protocol may
involve flipping spins at the boundary of a domain. High dimensional parameter spaces will
require different approaches to calculating geodesics. Analogous problems in transition state
theory have been addressed using the string method [141–143] and path sampling [144]. We
adapt some of the cited strategies to the problem of protocol prediction in Chapter 5.

Non-equilibrium nanoscale machines need to be designed for objectives beyond low dis-
sipation. If speed is the objective, the bound in Eq. (4.45) can be used to minimize the total
duration of the protocol, while keeping the average dissipation fixed. Supercritical heat en-
gines and magnetic refrigerators [145, 146] could also be studied using the Ising model, but in
these cases the objective requires efficient energy transfer around a thermodynamic cycle. In
such cases, we must include additional constraints when seeking efficient control. There may
also be practical limits on the range of the control parameters. As an illustration, Fig. 5.1
shows minimum dissipation protocols where the maximum temperature is constrained. The
optimal protocols we have predicted are weakly constrained where the manifold is flat, af-
fording tremendous flexibility to the controller. Where the metric changes rapidly, protocols
are tightly constrained and external control must be precise.
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Chapter 5

Computational approaches to protocol
prediction

The components of the metric tensor introduced in Chapter 4 are defined as integrals of time
correlation functions for the generalized forces that respond to external control. The tensor
takes on a different value for each point in the space of control parameters. For nonlinear
dynamical systems, analytically evaluating the time correlations for even a single point in the
space of all possible couplings may be prohibitively challenging. Thus, in order to make the
framework of thermodynamic geometry useful for studying complex, physical systems, we
must develop numerical approaches for predicting optimal protocols. This chapter discusses
three such schemes, each of which is best suited to a distinct class of problems.

5.1 Exact approach: Fast marching method

The first approach we will describe is appropriate for finding protocols in the case that
the metric tensor can be constructed numerically over the portion of parameter space of
interest. For example, the metric may be computed from dynamical simulations as was done
for the two dimensional Ising model in Chapter 4. Geodesics on two dimensional manifolds
embedded in three dimensional space, in the absence of a Riemannian metric, have been
computed using a numerical scheme based on finding level sets [147]. Once the metric is
known on a subspace of the parameter manifold, we recast the problem of approximating
geodesic distances in terms of an eikonal equation,

|∇T (t, h)| = 1/F (t, h), (5.1)

a partial differential equation commonly used to study wave propagation [138]. The field F
is the instantaneous speed of a wavefront and T represents the arrival time of the wave. In
our case, F is the linearized Riemannian distance between neighboring points λ0 and λ1,

d(λ0,λ1) =

√
1

2
(λ1 − λ0)T

(
ζ(λ0) + ζ(λ1)

)
(λ1 − λ0).
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We expect the approximate linearized distance to be robust so long as the discretization is
sufficiently fine.

The relation in Eq. (5.1) states that the arrival time grows inversely in proportion to the
distance that must be traveled on the surface of the manifold. In the case of the Ising model,
we computed the friction tensor on a finer mesh near the second order phase transition to
account for this approximation. More sensitive systems could employ an adaptive mesh
scheme to ensure a high degree of accuracy.

We use the fast marching method [138] to find numerical solutions to the eikonal equa-
tion. This algorithm approximates continuous geodesic paths, as shown in Fig. 5.1, given
discrete knowledge of the distance between neighboring points [147]. A geodesic path in the
parameter space travels backwards along the gradient of T. After computing the arrival time
field T for geodesics initiated from some initial point λ0, we can solve a first order differential
equation, to find a geodesic path between λ0 and λ1. The fast marching algorithm, which
will not be described in detail here, is an extremely efficient numerical scheme for finding
viscosity solutions to the eikonal equation [147]. Thus, once we have sampled the metric
tensor, we can rapidly compute optimal protocols between any two points on the manifold.

The technique performs well, even for the complicated manifold shown in Fig. 4.1. The
optimal protocols, as shown in Fig. 5.1, clearly avoid the critical point by curving around
this feature of the phase diagram due to the high friction in this region. Passing directly
through the first order phase transition, even in a finite time, also has a high dissipation cost.
Overcoming the broken symmetry requires nucleation of a domain of opposite spin, which
can then grow to reverse the net magnetization. Nucleation can be accelerated by applying
a large field, but this results in a proportionally higher dissipation when the spins reverse.

At low temperatures, excitations are small and local, which leads to low friction, as shown
in the configurations in Fig. 5.1. Because changes in the control parameters elicit little or no
change in the system, the protocols are weakly constrained below the critical temperature.
Similarly, in the high temperature limit, the vanishing spatial and temporal correlations
result in low friction and weakly constrained protocols. Only at intermediate temperatures
does higher friction impose tight constraints on the minimum dissipation paths.

Optimal protocols for reversing the magnetization are plotted in Fig. 5.1. Contrary
to our expectations, the magnetic field is first applied in the direction of the spontaneous
magnetization. Because the generalized friction coefficients are small in the low temperature
region, aligning the spins at the outset minimizes the overall contribution to the dissipation
by damping fluctuations as the temperature of the system is brought above the critical
temperature. The direction of the field is then reversed, but since the value of the magnetic
friction coefficient is large along the zero external field line, as shown in Fig. 4.1 (c), crossing
between positive and negative field must be performed slowly. The protocol is symmetric
about zero field due to the underlying symmetry of the model, hence the remainder of the
protocol is just a reflection of the first half: we reduce the temperature and finally turn off
the field.
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Figure 5.1: Minimum dissipation, finite-time protocols for reversing the magnetization of the
two dimensional Ising model with initial and final conditions below the critical temperature,
tC ≈ 2.269. The outermost protocol is unconstrained, whereas the inner two protocols have
a constraint on the maximum temperature. We control the external field h and the spin-spin
coupling constant J as a function of time. Initially, the protocols ramp up the external
field followed by a temperature increase as the field is turned off. Low dissipation protocols
circumscribe the critical region to avoid large spatial and temporal correlations near the
second order phase transition. The first order phase transition (h = 0, t < tC) is shown as
a dashed line ending at the critical point.
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5.2 On the fly approach: Geometric minimum action

method

Calculating the tensor for use with the fast marching method is computationally demanding,
particularly when the space of control parameters is high dimensional. We can make such
problems computationally tractable by opting to evaluate the metric locally, rather than
globally. We then use the local information about the metric to iteratively relax a trial
protocol towards the optimum. In order to calculate optimal nonequilibrium protocols with-
out explicit knowledge of the metric, we employ a geometric minimum action method [121,
122]. These numerical techniques build on the minimum action methods developed to study
reaction paths [148]. The advantage of this approach over the fast marching method is that
it can be used for arbitrarily high dimensional protocol spaces because it does not require
constructing the metric over the entire protocol space.

Our goal is to construct solutions to (4.15). To do so, we follow closely the algorithm
proposed in [121, 122]. We first discretize the protocol λ(t) on a grid t0 = 0, t1, . . . , tk = T ,
which tj = j∆t, j = 0, . . . , k, ∆t = tobs/k. Denoting the discretized path by λi = λ(ti), we
also discretize the first and second derivatives along the path, using

λ̇(ti) ≈
λi+1 − λi−1

2∆t
≡ Dλi, (5.2)

λ̈(ti) ≈
λi+1 + λi−1 − 2λi

∆t2
≡ D2λi. (5.3)

We then update the positions of λi until they approximate the solution to (4.15) as follows:

Letting λ
(n)
i be the k+1 positions of the control parameter in the N -dimensional space after

n iterations, we get the next update by solving the following linear system of equations,

λ
(n+1)
i − λ(n)

i =

∆r

(
D2λ

(n+1)
i +

1

2
(ζ

(n)
i )−1∂λζ

(n)
i : Dλ

(n)
i Dλ

(n)
i

)
for i = 1, . . . , k (5.4)

with λ0 and λk kept fixed and where ζni = ζ(λ
(n)
i ) and ∆r is a parameter controlling the

size of the update which must be kept small enough for numerical stability. We also ensure
constant spacing between points along the protocol, using a reparametrization scheme [142].
This procedure proceeds iteratively until the minimum action path is reached. Note that,
letting ∆t→ 0 and ∆r → 0, (5.4) amounts to solving (4.15) via relaxation using

∂rλ = ∂2
tλ+

1

2
ζ−1∂λζ : ∂tλ∂tλ+ µ∂tλ (5.5)

in which r plays the role of a relaxation time for the path and µ∂tλ is a Lagrange multi-
plier term that guarantees that |∂tλ| is a constant. Eq. (5.4) treats the diffusion term ∂2

tλ
implicitly to avoid the Courant-Friedrichs-Lewy condition on ∆r of an explicit scheme.
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The implementation outlined above can easily be made computationally efficient. Very
little information is shared between distinct points along the protocol. In fact, only at the
final stage of an iteration, when the protocol is updated, is global information about the
protocol needed. This means that the metric can be estimated for each point along the
protocol in parallel, which dramatically increases performance of the algorithm. Because
of the noise when estimating the metric, the algorithm will fluctuate around the minimum
action path, which can be addressed by averaging over the sampled paths from the final
iterations of the algorithm.

5.3 Applications to minimum dissipation bit-reversal

Modern computers dissipate a vast amount of energy as heat, greatly in excess of the mini-
mum thermodynamic cost of logic operations for classical bits [48, 149]. Recent experiments
have demonstrated that magnetic spintronics can be used to implement logic operations on
thin nanomagnetic films, providing a route to extremely low dissipation computing [150–
157]. However, thermodynamically ideal control cannot be realized in the laboratory, be-
cause any finite-time transformation must dissipate heat. The amount of dissipation depends
on the protocol used for control: the protocol that dissipates the minimal amount of excess
work to the environment is “optimal”. Other objectives of nonequilibrium control, such as
speed or accuracy [158, 159], could be used to define optimality in more general contexts.
Moreover, there has been substantial interest recently in trade-offs among energy, speed, and
accuracy [50, 160].

When we control a nanoscale, physical system and drive it away from equilibrium, the
character and extent of its fluctuations depend on the history of the perturbation that we
apply. Each external protocol used in an irreversible, nonequilibrium transformation has
an associated energetic cost: the reversible work plus excess work that is dissipated to a
thermal reservoir. At the nanoscale, the cost of control is not a deterministic quantity.
Because the fluctuations in the controlled system have a scale comparable to the extent of
the system itself, the dissipation fluctuates, varying from one realization of the protocol to
another. The inherent noise associated with small systems adds a layer of complexity to the
problem of designing protocols that favor low dissipation. Nevertheless, theoretical advances
in nonequilibrium statistical mechanics [18, 21, 29] and new experimental tools [87, 88, 157]
have inspired a wide range of efforts to find protocols that minimize the dissipated work and
achieve efficient control of fluctuating, nanoscale systems.

Here, we compute the optimal protocol for driving a nanomagnetic bit from a state
aligned with the “hard” axis to a state aligned with the “easy” access. This process is an
important step of experimental bit erasure protocols [157, 161]. The bit is described as the
magnetic moment of an anisotropic, nanomagnetic film and we control external fields that
couple to the easy and hard axes of the underlying magnet. This model has been widely and
successfully used to describe spintronic systems [152, 162, 163].

The idealization of an isolated bit neglects local, ferromagnetic interactions arising from
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spin-spin coupling. Such interactions affect the response of the system to external control,
so we also study low dissipation bit reversal by computing the optimal protocol to invert
the net magnetization of a ferromagnetic Ising model with two energetically degenerate
metastable states. In this model, the intricate spectrum of local fluctuations can be overcome
by spatially controlling the external field. We control the external magnetic field over small
blocks of spins, independently tuning the field strength over domains of a few interacting
spins. This set up leads to a very high dimensional space of control parameters, and solving
the optimization problem requires the development new computational tools.

The complex interplay between nonlinear dynamics and time-dependent external forces
in the systems that we consider puts them outside the reach of analytical treatment. While
there is a substantial literature on minimum dissipation control, previous theoretical work on
optimal protocols has largely focused on exactly solvable systems [118, 119, 126, 129]. The
limited set of systems that can be formally analyzed has inspired recent efforts to compute
low-dissipation protocols using numerical techniques [164–167].

The development of numerical strategies to determine optimal protocols has, in part,
relied on a geometric interpretation of minimum dissipation protocols. In the linear response
limit, an optimal protocol can be characterized as a geodesic on a Riemannian manifold [114,
117, 118, 168]. The equilibrium fluctuations and time correlations at different values of the
external control parameters determine a metric tensor, which defines a generalized length
proportional to the amount of excess work done along the protocol. If the control parameter
space is sufficiently small, this metric can be sampled exhaustively at a discrete set of control
parameter values.

As further discussed in Section 5.6, Ref. [165] uses path sampling techniques to harvest
nonequilibrium protocols in proportion to their average dissipation. Trajectory space Monte
Carlo techniques have also been developed for use in stochastic optimal control theory to
iteratively refine importance sampling distributions [166, 167, 169], exploiting the connection
between importance sampling and optimal control [170, 171]. With a bias that favors low
dissipation, Gingrich et al. [165] explore an ensemble of low dissipation protocols and show
that there is a large number of protocols with a dissipation near the minimum achievable
value. For a high dimensional protocol, exploring fluctuations in the protocol space remains
a significant computational challenge.

Here, we demonstrate that the geometric structure of the protocol space enables the use
of a geometric minimum action method [121, 122] to identify the optimal nonequilibrium
driving. The geometric minimum action method produces an equation of motion for the
protocol, namely Eq. (5.5). Because we update a quasi-one-dimensional “string”, the amount
of computation need to relax the protocol does not grow exponentially in the number of
dimensions. The method relies on only local, equilibrium sampling, meaning that we can
productively compute optimal protocols even in high dimensional control spaces.

The goal of reducing the excess work done on the system has many applications outside
of low-dissipation computing. Nanoscale engine optimization is one such direction: recent
experiments have implemented fluctuating, microscopic variants of the Carnot [100] and
Stirling [59] cycles. In these fluctuating engines, the excess power is dissipated to the heat
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Figure 5.2: Optimal control of the magnetic moment of a thin nanomagnetic film using
orthogonal fields hx and hy, as described in Sec. 5.4. (a) The optimal protocol as determined
by the geometric minimum action method. Inset : The potential energy of the system at the
beginning and end of the protocol. (b) A schematic of the control problem: a thin magnetic
film is controlled by external fields hx and hy. (c) The x and y fields as a function of protocol
time. Note the significant deviation from the linear ramps commonly used in experiments.

bath, rather than being converted to work. As a result, minimum dissipation protocols
maximize the engine’s thermodynamic efficiency at finite power. Also, in nonequilibrium
experiments that determine free energy differences via the Jarzynski equality [29], minimum
dissipation protocols determine the free energy difference with the highest possible accuracy
for a fixed, finite number of samples [131, 172].

5.4 Optimal bit control in a thin magnetic film

We represent a bit as the magnetic moment m of a nanoscopic metal film. At this scale,
thermal noise leads to spontaneous changes in magnetic moment. The fluctuating magnetic
moment satisfies the stochastic Landau-Lifshitz-Gilbert equation,

ṁ = m× (hext + hT)− αm×
(
m× (hext + hT)

)
, (5.6)

where the field hT is random thermal field, α is the Gilbert damping parameter, and hext

is the external field [173]. In the case that the magnet is a thin film, m is confined to the
xy-plane and we assume that the magnitude is conserved. The equation of motion for the
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angular direction of the moment, θ, is given by a Langevin equation [174],

θ̇ = −αE ′(θ) +
√

2αβ−1 η(t), (5.7)

E(θ) = β2 sin2(θ)− hx cos(θ)− hy sin(θ). (5.8)

The noise η has mean zero and is δ-correlated in time. Throughout, we set the anisotropy
parameter β2 = 1, the Gilbert damping coefficient to α = 10−2, and the inverse temperature
β = 1. The value of α is a realistic choice for the materials commonly used in spintronics
experiments [152].

We computed the optimal protocol for driving the system from a state in which the
magnetic moment is aligned along the easy axis (θ = π/2) to a state aligned with the hard
axis (θ = π). Driving the magnetic moment to the hard axis from the easy axis is the
final step in experimental protocols for bit erasure as implemented on thin nanomagnetic
films [157]. We took as an initial protocol a line from (hx, hy) = (0, 3) to (hx, hy) = (−3, 0)
discretized into ten equally spaced steps. Using a time step dt = 10−4 for the dynamics of the
magnetic moment, we estimated the thermodynamic metric and its derivatives with 10000
simulation steps at each point along the protocol. We propagated the protocol according to
Eq. (5.4) with a time step of 10−6. The system converged in under 1000 iterations and we
ran a total of 10000 iterations to ensure that the protocol was fully relaxed.

The optimal protocol for driving the transition is shown in Fig. 5.2 (a). The blue region
in the figure shows the portion of parameter space where there are two minima in the
potential. We used boundary conditions outside the region of metastability to ensure unique
initial and final equilibrium states. The optimal protocol deviates in a nontrivial way from
the protocols used in experiments, in which each field is a linear function of time [152, 157].
Initially, the field in the y-direction is decreased while the field hx remains small. As the
y-field is decreased, the minimum in the potential energy, as shown in the inset of Fig. 5.2,
shifts towards the final state at θ = π. The orthogonal field increases the curvature around
the potential energy minimum as it shifts towards the negative x-axis.

Interestingly, the protocol plotted in Fig. 5.2 has a shape similar to the boundary of the
“astroid” regions described in Ref. [174]. In Fig. 5.2, the blue region encloses a parameter
regime in which there is low probability of spontaneous bit reversal, i.e., when there is
metastability in the potential. Because the protocol avoids this region, at any fixed point
along the protocol there is a unique equilibrium state.

5.5 Control of the two-dimensional Ising model with

spatially varying field

Magnetic bits are stable on long timescales, due to the large energetic barrier separating the
+1 and −1 states. The inherent stability of nanomagnets is one of the primary advantages
of magnetic spintronics from the engineering perspective because no energy is required to
maintain the state of the bit [157]. A nonequilibrium protocol for bit reversal must drive the
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system over the large energetic barrier separating two states to switch between the ground
states. A naive protocol for this operation will be extraordinarily dissipative [164], but
more sophisticated control strategies such as local heating and spatial control may lower the
thermodynamic cost of bit reversal in practice [134].

We investigate protocols where the external field is spatially controlled. We consider
a ferromagnetic, two dimensional Ising model below the critical temperature, so that the
probability of a spontaneous bit reversal is low. We take as our control parameters N
independent external magnetic field strengths, {hi}Ni=1, which couple to non-overlapping
blocks of spins as shown in Fig. 5.3 (a). We prepare the system with a fixed boundary
condition that creates two metastable states. On the left and right sides, the boundary
consists of all up spins. On the top and bottom, the boundary consists of all down spins.
We then seek a protocol that drives the system from a configuration where the spin up
metastable state is favored (hi = 0.05, for all i = 1, . . . , N) to a region of the protocol space
where the spin down configuration is favored, (hi = −0.05, for all i = 1, . . . , N).

In our calculation, the protocol is discretized into sixteen equally spaced points. We
initialize the system with a protocol that linearly interpolates the magnetic field between
−0.05 and 0.05, so the initial protocol is spatially uniform. The calculations were performed
for 40× 40 and 100× 100 Ising models, controlling 4× 4 and 10× 10 block magnetic fields,
respectively. We carried out the geometric minimum action method with a time step of
10−4. At each iteration, 10000 sweeps of Monte Carlo dynamics with a Glauber acceptance
criterion were used to estimate the metric tensor and its derivatives at each point along the
discretized protocol. These protocols converge to their final form in roughly 1000 iterations,
but we continued to sample for 10000 total iterations. There is no significant dependence on
system size.

The optimized protocol for inverting the magnetization is shown in Fig. 5.3 (b). The
values of the external field are shown on a gray scale, with spin blocks drawn according to
their location. On the top, we show the six snapshots of the spin system near the transition
between the metastable states. These configurations of the system are representative of the
states seen along the optimized protocol.

The hourglass shapes seen in Fig. 5.3 (b) are characteristic of the spontaneous transition
pathways between the metastable states of this model [175]. First, the field reverses along
the left and right boundaries of the system. The work associated with flipping these spins is
minimal due to the layer of up spins from fixed boundary condition. The protocol proceeds
to reverse the magnetization by continuing to grow those domains from the boundary until
the bulk domain of up spins can be stabilized. The minimum dissipation protocol drives the
magnet from the negative metastable state to the positive metastable state by flipping spins
at the boundaries.
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Figure 5.3: Optimal control of the two dimensional Ising model with spatial control of the
magnetic field. (a) A schematic of the set-up of the system. Boundary conditions are fixed so
that there are two distinct metastable states. The external field is tuned independently for
the different spin blocks. (b) An optimized protocol is shown (bottom) driving the transition.
Representative structures from the configuration space are shown (top).

5.6 Monte Carlo approach: Protocol sampling

The computational approaches outlined in Sections 5.1 and 5.2 target a single optimal pro-
tocol. Identifying the exact optimum, however, may be much more costly than finding a
non-optimal protocol that still has a low average dissipation. In many applications, like free
energy calculations using Jarzynski’s nonequilibrium work relation, the additional gains in
performance reaped by using the optimal protocol can be outweighed by the effort required to
find the optimum. The advantage of settling for a near-optimal protocol is most pronounced
when a plethora of protocols can be found near the optimum.

In Gingrich, Rotskoff, Crooks, and Geissler [165], we introduced an approach for studying
the ensemble of low dissipation protocols. The methodology employs Metropolis Monte
Carlo dynamics to sample the joint space of protocols and trajectories with a bias towards
low average dissipation. Roughly, the algorithm treats the protocol as a polymer subject to
a Monte Carlo dynamics. For each protocol visited, the average dissipation associated with
that protocol is estimated from a finite sampled mean—this aspect of the procedure relies
on path sampling move sets to ensure tolerable acceptance rates [176]. In our formulation,
we use a sampling procedure that allows an exact exploration of the following distribution
in the linear response limit,

P [Λ(t)] ∝ exp (−γ〈ω〉Λ) , (5.9)

where ω is the dissipation and γ is a statistical bias that favors protocols with low average
dissipation. Directly sampling Eq. (5.9) is difficult, because determining 〈ω〉Λ requires an
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Figure 5.4: (a) The protocol entropy is plotted as a function of average dissipation for the
Ising spin inversion process described in Chapter 4. (b) The scaling of the entropy in the
large γ limit is consistent with Eq. (5.14).

average over many trajectories for each distinct protcol Λ(t) visited in the course of the
Monte Carlo dynamics. Our approach allows an exact reweighting of each protocol by instead
sampling the joint space of protocols and trajectories. This reweighting uses a correspondence
between the mean and variance of a Gaussian dissipation distribution, which is a consequence
of the Fluctuation Theorem. The details underlying this method will not be discussed here,
but we will instead focus on the generic structure of the low-dissipation protocol ensemble.

Protocol Entropy

The statistical bias γ in Eq. (5.9) can be tuned to target near-optimal protocols. Unfor-
tunately, the fluctuation theorem places an intrinsic limitation on the strength of the bias
and large values of γ require that large numbers of trajectories are sampled for each pro-
tocol [165]. Nevertheless, we can argue quite generally that we sample protocols with an
average dissipation that near the optimal value, even when using a weak statistical bias γ.

We can anticipate the existence of a large class of low dissipation protocols by returning
to the thermodynamic metric discussed in Chapter 4. While the metric is sharply peaked
near the second order phase transition of the model, in both the high and low temperature
regimes correlations decay rapidly (cf. Fig. 4.1). This indicates that, at least within the
linear response regime, little dissipation is incurred even when the control parameters are
changed by large amounts. The unconstrained path through protocol space in the low
temperature regime suggests that many distinct protocols will have comparable dissipation
to the optimum.

The density of low dissipation protocols can be analyzed by computing a protocol entropy,
which, roughly, measures the population of protocols as a function of average dissipation.
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We define the protocol entropy as,

S(ω) = ln

[
Ω0

∫
D[Λ(t)] δ(ω − 〈ω〉Λ)

]
, (5.10)

the integral is taken over all protocols Λ(t) and the parameter Ω0 is used to set the arbitrary
zero of the function. Just as in the microcanonical partition function, Eq. 5.10 gives the vol-
ume of protocols that have average dissipation ω. Under very general assumptions, we argue
that the protocol entropy grows rapidly near the minimum accessible average dissipation
and then crosses over to a regime of slower growth. This generic structure of the protocol
entropy suggests that a modestly biased random walk through the space of protocols will
target near-optimal average dissipations.

We let Λopt(t) : {ti}K0 → Rn denote the minimum dissipation protocol for a transforma-
tion, where tK is the duration of the protocol and n is the number of control parameters. We
assume that the protocol is specified by a discrete set of values Λopt(ti) which are linearly in-
terpolated to give a piecewise continuous function. The initial configuration is drawn from a
time-invariant distribution determined by the initial value of the control parameters Λopt(0).
Defined as such, we can view the protocol as a polymer of length K in n-dimensional space.

We can estimate the form of the protocol entropy with an estimate of the partition
function for protocols in the strong biasing limit. In the limit of large values of the bias
parameter γ, the difference between a sampled protocol Λ(t) and the optimal protocol Λ∗(t)
should be small. If the average dissipation 〈ω〉Λ is a smooth functional of the protocol, we
can approximate the deviation from the minimum average dissipation in terms of the small
protocol variations δΛ = Λ− Λ∗,

〈ω〉Λ = ω∗ +
1

2

∑
i,j=1

δΛi ·Kij · δΛj, (5.11)

where the indices i and j label times at which the protocol is manipulated. In this limit, we
can explicitly calculate the moment generating function for the average dissipation,

Z(γ) =
〈
e−γ〈ω〉Λ

〉
∼

γ→∞

1√
det(γK)

e−γω
∗ ∝ γ−n/2e−γω

∗
. (5.12)

and n denotes the total number of degrees of freedom in the protocol.
The Gaussian fluctuations around the minimum dissipation protocol make this partition

function tractable. From Eq. (5.12), the unbiased distribution of average dissipations P (ω) ∝
exp
[
S(ω)

]
is an inverse Laplace transform of Z(γ),

P (ω) ∝ (ω − ω∗)n/2−1, (5.13)

and hence the entropy in the large γ limit is,

S(ω) = const +
(n

2
− 1
)

ln(ω − ω∗). (5.14)
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Fig. 5.4 compares the asymptotic expression (5.14) with the entropy computed for the two
dimensional Ising spin inversion protocols.

From the asymptotic expression for Z(γ), we can also compute the average dissipation
associated with protocols sampled under the bias γ:

〈ω〉 = − d

dγ
lnZ(γ) (5.15)

= ω∗ +
n

2γ
. (5.16)

In the absence of protocol bias, γ = 0, typical values of dissipation are quite large. Provided
that Λ(t) is bounded, the mean dissipation 〈ω〉0 at γ = 0 should nonetheless be finite, as
is the corresponding variance 〈(ω − 〈ω〉0)2〉0. Sufficiently close to the maximum of P (ω) we
therefore have

S(ω) = S(〈ω〉0)− (ω − 〈ω〉0)2

2〈(ω − 〈ω〉0)2〉0
(5.17)

The parameters 〈ω〉0 and 〈(ω − 〈ω〉0)2〉0 in this expression are determined numerically by
computing average dissipation for protocols generated in the γ = 0 ensemble. The corre-
sponding curve is plotted in Fig. 5.4 as a dotted line. The moment generating function for
the protocols is

Z(γ) ∝ exp

[
−γ〈ω〉0 +

1

2
〈(ω − 〈ω〉0)2〉0γ2

]
, (5.18)

giving a γ-biased average dissipation:

〈ω〉 = 〈ω〉0 − γ〈(ω − 〈ω〉0)2〉0, (5.19)

which is shown as a dotted line in the inset of Fig. 5.4.
The protocol entropy directly quantifies the near-optimal protocols that can be used for

nonequilibrium control. The arguments above suggest that the structural features we see for
the Ising spin inversion protocol entropy are generic. This observation relieves some of the
pressure to find an exact optimum. As an illustration of the breadth of near-optimal proto-
cols, we consider those protocols with an average dissipation less than a standard deviation
away from the optimal protocol, where the standard deviation measures the fluctuations
in dissipation around the optimal protocol. In the linear response regime, we can perform
this calculation exactly because the variance of the dissipation is related to the mean as
〈(δω)2〉 = 2〈ω〉. The optimal protocol has an average near 200, as can be determined from
the asymptotic value of the protocol entropy function shown in Fig. 5.4. Within a stan-
dard deviation the number of accessible protocols has increased by a factor of roughly e10, a
dramatic enhancement.
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5.7 Connections between minimum dissipation

protocols and spontaneous transition paths

The results throughout this chapter illustrate an appealing potential connection between op-
timal near-equilibrium control and the intrinsic relaxation of an equilibrium system. Because
the dissipation is a measure of irreversibility, it seems natural that an optimal nonequilibrium
protocol would drive the system along a spontaneous transition path. There is an extensive
theoretical literature in chemical physics dedicated to reaction paths, and many distinct for-
mal tools exist to describe them [142, 144, 177]. Minimum free energy paths are maximum
likelihood transition pathways, typically used to describe spontaneous transitions between
two metastable states of a physical system in thermal equilibrium [142]. A minimum free
energy path minimizes the total variation in the free energy as function of some collective
variables α ∈ Rd. In particular, the minimum α∗(s), s ∈ [0, 1] is a minimizer of the following
functional,

I[α(s)] =

∫ 1

0

|∇F (α(s))| · |α′(s)| ds. (5.20)

Here, we consider nonequilibrium protocols that minimize the average dissipation during
some finite time irreversible transformation. Empirically, these optimal protocols give rise to
a dynamics of the controlled system that resembles the spontaneous dynamics. An optimal
nonequilibrium protocol λ∗ minimizes the functional introduced in Chapter 4,

L[λ(t)] =

∫ 1

0

√
λ̇ · ζ(λ(t)) · λ̇ dt, (5.21)

where,

ζ(λ) = β

∫ ∞
0

〈δXT (τ)δX(0)〉λ dτ, (5.22)

and Xi = −∂βV
∂λi

is the force conjugate to the control parameter λi.
Thus, one might anticipate that if λ∗ is an optimal protocol in the sense of Eq. (5.21)

then the path α(t) := 〈X〉λ(t) is a minimum free energy path in the sense of Eq. (5.20). We
have defined α as the minimum action path of the dynamics subject to the optimal protocol.
As an attempt to verify this claim, we first compute the derivative of the path with respect
to the parametrization,

α̇ =
d

dt
〈X〉λ(t) (5.23)

=
d

dt

∫ t

0

ds
d

ds
〈X〉λ(s) (5.24)

=

∫ t

0

〈δXT (0)δX(s)〉λ(s)λ̇. (5.25)

The linear response approximation typically integrates this expression with an upper bound
of t → ∞, assuming that system relaxes faster than the control parameters change. Next,
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we need to calculate the gradient of the free energy along this path. This term is more
subtle: we have assumed that the position along the path is given by the equilibrium average
position with the current control parameters. This means that α(t) = 〈X〉λ(t) is a free
energy minimum and the gradient should vanish. However, during the nonequilibrium driving
protocol, we expect that the system will respond to an instantaneous change in control
parameters. We thus postulate that we have a correction to the gradient of the free energy
that arises from this lag, an approximation reminiscent of the endoreversibility arguments in
original approach to thermodynamic geometry [47]. In particular, we evaluate the gradient at
〈X〉λ(t) in the free energy at time t+∆t, immediately after changing the control parameters.
Let us write out explicitly the expression in terms of the relevant free energy,

∇F (〈X〉λ(t)) = −β−1∇X ln

∫
Rd
dx e−βV (x,λ(t+∆t)) (5.26)

= −β−1∇X ln

∫
Rd
dx e−βV (x,λ(t))e−βλ̇∆t·X (5.27)

= ∆t λ̇. (5.28)

By the argument above, the gradient of the part of the free energy that is associated with
the potential V (x,λ(t)) vanishes when evaluated at 〈X〉λ(t). One way of seeing this explicitly
is to approximate the free energy with a saddle point estimate.

We now combine the terms to write the objective function in terms of this path α(t),

I[α(t)] =

∫ 1

0

|∆t λ̇| · |〈δXT δX〉λ(t)λ̇| dt. (5.29)

A few comments about the terms involved: ∆t is a positive constant, and thus can be pulled
out of the integral; the tensor is a positive semi-definite one, so we can write,

= ∆t

∫ 1

0

λ̇
T
(∫ ∞

0

〈δXT (0)δX(s)〉λ(t)ds

)
λ̇ dt. (5.30)

We recognize the expression above as, up to a constant, the energy associated with the length
functional Eq. (5.21). It should be emphasized that this calculation is heuristic, at best. The
precise connection between spontaneous reaction paths and optimal protocols will demand
further exploration and more sophisticated arguments.

Establishing a connection would be timely, because determining nonequilibrium driving
protocols that minimize dissipation for nanoscale systems has become a significant goal in
both the molecular sciences and engineering. Increasing the number of available control pa-
rameters leads to more elegant and efficient strategies for control, but the resulting increase
in complexity demands new computational tools. Under very general assumptions, the argu-
ment given in Sec. 4.3 proves that the notion of thermodynamic geometry emerges only from
a time scale separation between the dynamics of the controlled system and the experimental
parameters. This derivation encompasses the linear response arguments in Ref. [118] but
further elucidates the physical origins of the thermodynamic metric.
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The geometry of nonequilibrium control allows us to derive a general, robust numerical
method to compute optimal protocols. In analogy to Lagrangian mechanics, the thermody-
namic length can be thought of as an action functional in the space of protocols. Optimizing
for minimum dissipation is equivalent to minimizing this action. The geometric minimum ac-
tion method we describe can be used to compute optimal protocols in previously inaccessible,
high-dimensional systems.

We applied these general tools to control problems motivated by recent spintronics exper-
iments using nanomagnetic bits. Our calculations reveal protocols that deviate dramatically
from those protocols commonly used in experimental settings, suggesting simple strategies
for pushing computing closer to the low-power limit.

The nontrivial protocol for changing the orientation of bit described in Sec. 5.4 has an
evocative structure. The form of the optimal protocol mimics the astroid shape of the
boundary in parameter space between the metastable regime and the stable regime. At
this boundary, spontaneous transitions between the initial and final configurations become
possible, perhaps indicating that the system is being driven through a set of states followed
by an unperturbed transition.

In the interacting example of bit reversal with spatial control over the external fields,
Sec. 5.5, the optimal protocol appears to drive the system along a nucleation pathway. This
optimal protocol has a striking similarity to spontaneous reaction paths in the absence of
nonequilibrium driving (cf., Ref. [175]). Empirically, the optimal protocol appears to drive
the system along a minimum free energy path, which is the most likely spontaneous reaction
path [142], consistent with the heuristic argument in Section 5.7.
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Chapter 6

Nonequilibrium control in
self-assembly

When interactions among components can be precisely tuned, it is possible to design mate-
rials that spontaneously assemble into microscopic structures [178–182]. These autonomous
assembly processes often yield only a fraction of the desired structure. Metastable interme-
diates can decimate the yield which has led, in some cases, to restricted design spaces or
more complex components [183, 184]. For example, DNA origami reduces the prevalence of
metastable structures by taking advantage of the large sequence space to ensure that few
favorable non-specific interactions are included [179, 185]. Synthesizing molecular compo-
nents under stringent constraints or with highly specific interactions, however, also restricts
the materials we can use and the structures we can productively make.

Strategies that achieve robust assembly without such restrictions are of great practi-
cal interest, due to the unique physical properties of microscopic metamaterials [186, 187].
However, kinetic trapping can undermine the goal of high yields when there are strong
interactions among the components [188]. When such intermediates are prevalent, the ap-
proach to equilibrium is slow, which suggests we may be able to accelerate self-assembly at
the nanoscale. Can long-lived, undesired structures be eliminated—or at least significantly
mitigated—through the use of nonequilibrium perturbations that accelerate relaxation to-
wards the target structure?

We consider this question through the lens of a colloidal self-assembly process. In par-
ticular, we focus on the formation of clusters with a target stoichiometry; given attractive
particles of type A and B, we ask how to maximize the yield of ABn clusters where n is the
maximum number of B particles sterically accommodated by the central A particle. The
problem of assembling clusters with a high yield of desired structures has previously been
studied by varying the size ratio of the constituent colloidal particles [184]. However, the
previous work on this issue did not directly consider the kinetics of the assembly process,
and doing so offers an alternative route to enhanced yield.

Because experiments typically work with charged colloidal particles in solutions with De-
bye lengths much smaller than the micron scale particles, the interactions between particles
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Figure 6.1: (a) In order to bind an additional colloidal particle, a probe area ap, bounded
by the dashed line, must be unoccupied. The effective area of occupancy, aocc is determined
by the effective hard sphere radius of the B particle and is shown bounded by the solid
black line. The probability of density fluctuations in the area ap determines, in part, the
probability of each additional binding event. (b) A configuration of an AB3 cluster with the
diameter ratio rB/rA = 3, which accommodates a maximum stoichiometry of n = 4. As in
(a), the boundary of probe area is drawn as a dashed line and the boundary of the occupied
area overlapping the probe area is drawn as a solid black line.

are extremely short-ranged [184]. What is more, the strength of the surface charges and
size of the binding area are such that the particles bind essentially irreversibly. Under these
conditions, each binding event ABi → ABi+1 is dictated by the probability that a B particle
encounters the binding surface of an A particle. Fig. 6.1 illustrates the necessary conditions
for binding: a probe area ap must be vacant with sufficient probability that a B particle will
encounter an accessible binding surface on the timescale of an experiment. Under equilib-
rium conditions, if the B particles are “tightly packed” on the surface of the A particle, the
relaxation towards the maximally bound ABn structure becomes extremely slow relative to
the timescale of typical particle motions. Though it is difficult to achieve experimentally, if
the sizes of the particles can be modulated, the yield of ABn clusters can be improved by
preparing the B particles so that they are as small as possible without allowing an n + 1st
particle to bind [184]. This design principle ensures that the necessary binding surface is
available with maximal probability.
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Here, we offer a distinct, more easily and sensitively tuned control parameter to improve
the yield of the desired assembly. We show that the accessible binding area ap can be
exposed with high probability simply by applying an external field that drives the charged
colloids in opposite directions. This, together with the streaming motion of the driven
particles, leads to a dramatic enhancement of the number of binding events per unit time.
Our design principle can be rationalized with a kinetic model of the assembly process based
on the density fluctuations within the binding area ap. We verify our results with numerical
simulations of the microscopic particle dynamics over a wide range of B/A diameter ratios
and electric field strengths.

The increase in yield comes at a dissipative cost. We systematically explore the relation
between yield and the dissipated work in both our kinetic model and using particle-based
simulations. We suggest a more generic trade-off between the speed of relaxation towards
equilibrium and dissipation. Further, we demonstrate the existence of an optimal driving
force.

6.1 Kinetic model of equilibrium yield

To explore the relationship between yield and control, we first describe an equilibrium pro-
cess in which oppositely charged colloidal particles, types A and B, assemble into clusters.
At equilibrium, the relationship between the particle diameter ratio α = DB/DA and the
fraction of maximally bound clusters, i.e., the yield, has been approximated in terms of the
free binding area of a central particle [184]. The analysis of Ref [184] does not explicitly
model the kinetics, but reveals the importance of the binding dynamics. First, we note that
there is a range of diameter ratios that can accommodate a maximum of n bound B particles
without the B particles sterically occluding one another. Denote this interval by [α−n , α

+
n ]. As

α approaches α+
n , the packing of B particles around the central A particle becomes tightly

constrained. A random encounter from a B particle in the bulk is unlikely to find the binding
surface of the A particle, because it requires that the bound particles to occupy a very rare
configuration. On the other hand, as the diameter ratio approaches the lower bound α−n , the
amount of available binding surface increases, nearly to the point that an n + 1st particle
could fit without steric hindrance. The relative rate of binding the nth B particle when the
diameter ratio is α−n greatly exceeds the rate at α = α+

n .
The kinetics of cluster formation can be modeled explicitly to give a more complete

theoretical description of the expected yield. Because the A-B interactions are strong, the
equilibrium state of the colloidal system is expected to be entirely populated by maximally
bound clusters. The model used to study in Schade et al. [184] focuses on the available area
for subsequent binding events, but does not give a physical description of the kinetics of the
assembly process. Moreover, their model does not include relaxation of the partially formed
clusters.

We model the A − B binding process as a reaction diffusion process. This approach
decomposes the process into two contributions to the rate of binding: the fluctuations of
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the bound B particles, which determine the probability of finding free binding surface, and
the rate of new arrivals. The change in density of the population of ABi clusters can be
expressed solely in terms of the densities ρABi−1

and ρB and a bimolecular rate constant k
(i)
b ,

∂tρABi = k
(i)
b ρABi−1

ρB. (6.1)

Computing k
(i)
b involves analyzing the molecular scale fluctuations that give rise to a suc-

cessful binding event and the diffusive dynamics of the particles themselves.
We first consider the probability that a B particle arrives at a partially formed cluster,

assuming that once it has entered the “reaction volume”, it joins the cluster with a rate k∗.
We assume that the probability that the distance between a B particle and an ABi−1 cluster
is r, denoted by c(r), relaxes to a steady state, which is constant inside the reaction volume.
Outside this region, the probability c(r) satisfies a Smoluchowski equation,

D∇2c(r) = 0, (6.2)

with the boundary condition,
lim
r→∞

c(r) = ρABi−1
ρBv0, (6.3)

where v0 is a constant with units of volume, which we subsequently set to unity. Once a
B particle is sufficiently close to the ABi−1 cluster, it will bind with a rate k∗. The length
scale at which these binding kinetics dominate, which we denote R, defines the microscopic
reaction volume for the process. In the steady state, there is a current through the surface
of the microscopic reaction volume,

J(r) = 4πr2D∂rc(r), (6.4)

which can be related to the rate of attachment,

J(R) =
4

3
πR3k∗c(R). (6.5)

Setting J(r) = J(R) yields a first order differential equation which can be solved analytically,

c(r) = ρABi−1
ρB −

R2k∗p(R)

Dr
. (6.6)

To derive an expression for the reaction rate, we first evaluate c(r) at the boundary of
the microscopic volume,

c(R) =
ρABi−1

ρB

1 + k∗R
D

. (6.7)

Using this expression in Eq. (6.5) provides an explicit formula for the reaction rate as function
of k∗,

k
(i)
b =

4πDR

1 + 3D
k∗R2

. (6.8)
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Note that this expression recovers the usual diffusion limited reaction rate in the case that
k∗R� D, i.e., when the reaction is extremely effective.

The microscopic reaction rate k∗ is sensitive to the geometry and dynamics of the ABi−1

cluster. A robust estimate of k∗ can be derived using Kramers’ theory [189],

k∗ = D

[∫ R

x∗
dx p(x)

∫ x

rA

dx′
1

p(x′)

]−1

. (6.9)

The Kramers’ expression for the rate assumes that the interparticle distance is an appropriate
reaction coordinate for the process, i.e., that it captures the slowest degrees of freedom [136,
190, 191]. Evaluating the expression for k∗ requires detailed information about the inter-
molecular interactions during a binding event.

We computed the probability that there are no particles in an area a, given that n − 1
particles are bound. Note that n, the maximum number of particles that can bind, varies
with α. Directly evaluating this probability is challenging due to the correlations among the
n − 1 particles. To estimate the probability at each value of α and i ≥ 2, which we denote
Pa(i− 1), we performed hard disk Monte Carlo simulations. In our Monte Carlo dynamics,
each of the i− 1 B particles is represented as a hard disk with area a on the surface of the
central, spherical A particle. We then monitor the number of disks [0, i − 1] overlapping a
probe area of size a. We compute Pa(i− 1) over a range of diameter ratios for i = 3, . . . , n.
The probability of finding binding space decays faster than exponentially as the maximum
diameter ratio α+

n is approached.
Using the probabilities Pa(n− 1) we can make a simple estimate of the bimolecular rate

constant given in Eq. (6.12) without explicitly computing k∗. The integral in Eq. (6.9) can
be approximated as,

k∗ ≈ D

σ2
B

e−β∆w (6.10)

where ∆w is the maximum of the barrier in the potential of mean force for the ABi−1 to B
distance and σB is the diameter of the B particle. Using,

e−β∆w ≈ Pa(n− 1), (6.11)

we get a simple approximate expression for the full bimolecular rate constant,

k
(i)
b =

4πDR

1 +
Dσ2

B

RPa(i−1)

. (6.12)

While the approximation we have made is convenient and provides a transparent physical
mechanism for the increases we see in the yield, we can also compute the integral in Eq. (6.9)
can be computed from simulations of particle dynamics. Doing so entails computing p(r),
which could be done using umbrella sampling.
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We can compute the yield using the reaction rates derived above. The concentration of
sterically accessible clusters is tracked by a vector

ρ(t) =


ρA
ρAB

...
ρABn

 , (6.13)

which initially has ρA = ρbulk
A and all other cluster densities set to zero. The time evolution

of the cluster density is described by the master equation,

∂tρ = Wρ, (6.14)

where W is the rate matrix,

W =


−k(0)

b ρB
k

(0)
b ρB −k(1)

b ρB
. . . . . .

k
(n−2)
b ρB −k(n−1)

b ρB
k

(n−1)
b ρB 0

 (6.15)

which has a solution,
ρ(t) = eWtρ(0). (6.16)

The systems we are considering here have a very high concentration of B particles to A
particles, so we assume that depletion effects are negligible and that ρB is constant.

Diagonalizing W is straightforward and the eigenvalues of the rate matrix are

λ =
(

0,−k(0)
b , . . . ,−k(n−1)

b

)
. (6.17)

The fact that the dominant mode is a zero eigenmode should come as no surprise: the long
time limit of the irreversible dynamics of attachment should result in complete saturation
of the ABn stoichiometry. However, the decay towards the final equilibrium state can be
extremely slow, depending on α, so it is the transient behavior that determines the yield.

The expected yield can now be expressed as a function of the diameter ratio α at time t

η(α, t) = ρABn(α, t)/ρA(α, 0). (6.18)

This quantity is a measure of the efficiency of the equilibrium assembly process; it gives the
fraction of A particles that reach the desired, asymptotic equilibrium state, in which the
maximum number of B particles are bound. The yield η asymptotically approaches unity in
the long time limit, but we are seeking strategies to increase η for finite times.
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Figure 6.2: The yield as a function of the Monte Carlo bias E . The yield is plotted here
for AB4 clusters in three distinct regimes, α = 2.45 ≈ α−, α = 4 ≈ α+ and the intermediate
value α = 3.

6.2 Enhancing the yield

In order to increase the finite time yield, we seek to enhance the rate of A − B binding
events using a nonequilibrium drive. The bimolecular reaction rate k

(i)
b is highly sensitive to

the probability of finding sufficient free binding surface, Pa. This suggests that manipulating
Pa by some external means should modulate the yield, η(α, t). To test this principle, we
sampled the occupancy probability in the presence of an external field E , which we write
P Ea (i). The field E can be represented in hard disk Monte Carlo simulations as a bias on the
displacements of the B particles along the z-axis.

For a broad range of diameter ratios, the kinetic model predicts enhanced yields with
the application of an external drive. Fig. 6.2 shows the yield ηE(α, t) as a function of field
strength E for α = 2.45, 3, and 4. Because the equilibrium yield is high near α− ≈ 2.45, as
reported in Ref. [184], the enhancement is weak with external driving. This is evident in
Fig. 6.2, where the increase in yield saturates under increasing field strength near 0.3. At
α = 4, which is near α+, the available area to bind the final particle is sufficiently small
that the field cannot perform the reversible work needed to shift the distribution of Pa,
except under strong driving. Hence, near α− and α+ the expected enhancements are weak
for modest driving. However, in the intermediate regime, α ≈ α−+α+

2
, the yield is enhanced
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dramatically. At α = 3, shown in Fig. 6.2, the equilibrium yield is increased nearly 80%
with field strengths that produce essentially no change near α+.

6.3 Simulations of particle dynamics

To test the predictions of the kinetic model more throughly, we conducted Brownian dynam-
ics simulations of the assembly process. While the kinetic model predicts that driving the
colloidal particles with an external field should increase the yield, that analysis neglects the
detailed dynamics of the particles. To demonstrate that yield is substantially shifted even
when such correlations are included, we performed dynamical simulations of the particle
assembly process. We treated the A and B particles as charged particles, with charges q
subject to an over-damped Langevin equation of motion,

Ẋ = −
(
∇V (X) + Eq

)
dt+

√
2β−1ξ. (6.19)

The potential energy V (X) is designed to mimic the experimental colloidal systems studied
in Schade et al. [184]. First, we set the radius of the A and B particles via a Weeks-Chandler-
Anderson potential

VWCA(X) =


∑

ij 4ε

[(
σij

|Xi−Xj |

)12

−
(

σij
|Xi−Xj |

)6
]

+ ε |Xi −Xj| ≤ 21/6σij

0 |Xi −Xj| > 21/6σij.
(6.20)

The parameter σ determines the hard sphere radius of the A and B particles. For i, j = A
it is set to σij = σA, with the same convention for B particles. The sum of the hard sphere
radii is used for A − B interactions. We used σA = 1 and σB = α throughout. In units of
kBT , ε = 10 in all simulations.

The attractive interaction between the charged colloids is extremely short-ranged due to
short Debye length of the solutions used in experimental settings. Because the attraction
is observed to be essentially irreversible, we approximate this interaction using a Morse
potential,

VM(X) =
∑
ij

D0 [exp(−2α(|Xi −Xj| − r0)− 2 exp(−α(|Xi −Xj| − r0)] , (6.21)

with D0 = 15 and α = 10. We truncated the Morse interaction slightly (0.25σA) above the
cut-off of the WCA potential, which creates a short-ranged, deep potential. We integrated
the equations of motion with a time-step of 5× 10−5 for 5× 105 total steps. All simulations
were conducted with the HOOMD software package, v1.3.3 [192, 193].

We computed the yield η(α, tobs) for a wide range of diameter ratios. The equilibrium
results, shown in Fig. 6.3 (a), indicate that the asymptotic state is not accessible on simu-
lation timescales for many values of α. Instead, the yield curves reach a maximal value for
each n and then decrease sharply as the maximum diameter ratio is approached.
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Figure 6.3: The relative yield computed from particle-based Brownian dynamics simulations
at t = 5× 105∆t for various cluster stoichiometries A : B = 1 : N and electric field strengths
E . Relative yield is defined as the fraction of clusters of type ABN over the total number of A
particles. (a) The equilibrium yield over a large range of diameter ratios. (b) The AB4 yield
for a range of external electric field strengths. (c) The yield over a large range of diameter
ratios with external electric field E = 4.
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To test the principle suggested by the kinetic model, we conducted simulations with the
same parameters described above with an additional external field E . The external field drives
the oppositely charged A and B in opposite directions, modulating both the probability of
finding an available binding surface Pa and also the probability of particle encounters. As
illustrated by Fig. 6.3 (b), the yield of AB4 clusters can be enhanced from near zero to near
unity under sufficiently strong driving, as is the case for α = 3.5. This phenomenon is not
unique to the AB4 clusters: Fig. 6.3 shows that with E = 4 the relative yield of each cluster
type ABn is enhanced.

The full yield curves, Fig. 6.3, are enhanced relative to the equilibrium yield over a broad
range of diameter ratios. Note that the fastest relaxing kinetic intermediates, the AB2

clusters, are almost entirely depleted. Further, AB3 and AB4 clusters are formed with high
probability even at diameter ratios that very rarely successfully assemble under equilibrium
conditions. While the enhanced yields evident in Fig. 6.3 are predicted by considerations of
the microscopic binding kinetics, under very strong driving conditions the A − B binding
interaction can be disrupted. When the driving is strong enough to break apart existing
clusters, the predictions of the kinetic model fail because the assumption of irreversible
binding is violated.

6.4 Dissipation-yield trade-off

In order to accelerate the rate of ABn cluster formation, we have expended energy. When the
dynamics are unperturbed, the rate of particle additions to the growing clusters depends on
the reversible work required to create a void for the next particle, via Eq. (6.12). As we have
shown, the probability of finding such a void can be easily modulated by the applying an
external potential. The accelerated assembly, however, requires that we do work on partially
formed colloidal clusters. The work in excess of the reversible work must be dissipated to
the bath as heat according to the first law of thermodynamics.

We can view the dissipated work as a cost that we pay for higher yields. We can study
this trade-off between work and yield by introducing an enhancement factor

Θ(E , α, t) =
ηE(α, t)− η(α, t)

W . (6.22)

This quantity measures the change in yield from the equilibrium yield due to the work W
performed on the system under the application of the external field E . The dissipative cost
of the driving is proportional to E , so in the case of the kinetic model, we simply use E in
the denominator of this generalized efficiency.

The average reversible work done on a cluster by the external field can be expressed as a
function of the probabilities Pa. In particular, we note the reversible work required to create
a vacancy of area a on a cluster with n− 1 particles bound is,

Wrev = −kBT lnPa(n− 1). (6.23)
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Figure 6.4: The yield enhancement of AB4 clusters at diameter ratios in the range α ∈
[3.1, 3.5]. (a) The kinetic model. In all cases, the enhancement factor Θ (Eq. (6.22)) shows a
maximum. In the kinetic model, we relate the work W to the field strength E . (b) Particle-
based simulations. The strong field values lead to a diminishing enhancement. Inset: the
nonlinear scaling of the work per particle w with external field strength should be contrasted
with the linear response approximation in (a).
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Then we can compute the average work on such clusters associated with the external field
E ,

∆Wrev =WErev −Wrev (6.24)

= −kBT
[
lnP Ea (n− 1)− lnPa(n− 1)

]
. (6.25)

The quantity ∆W does not account for the total work done on the system by the external
field, but rather establishes a direct correspondence between the work and the enhanced
yield.

The total work done by the external field on average is,

Wtot = E〈q ·∆Xz〉t, (6.26)

where ∆Xz is the total displacement in the z-direction and the average is computed over
a trajectory of time t. We computed the work done by the external field on the system for
dynamical assembly trajectories to gauge the trade-off between the amount of work being
dissipated to the bath and the enhanced yield, as shown in Fig. 6.4. Because the probability
P Ea (n − 1) has a maximum value at one, the effect of the field E becomes saturated as E
increases. That is, when comparing two large values of the external drive, the change in
total dissipation will be proportional to ∆E , but the shift in ∆Wrev, and hence further yield
enhancement, can be small. Interestingly, the diminishing returns of the nonequilibrium
work lead to an optimum in the enhancement efficiency. In Fig. 6.4, we plot Θ(E , α, t) for
α ∈ [3.1, 3.5] as function of the external field strength, where the target cluster is AB4. At
the smaller values of α, there is appreciable free area on the surface of the A particle, but
the equilibrium yield is low because Pa is small. Weak driving can substantially improve the
yield, whereas the gains lessen at larger driving strengths. This leads to a maximum in the
driving efficiency, which clearly illustrates a trade-off between the dissipative work and the
yield.

For larger diameter ratios, the reversible work required to expose the binding surface with
sufficient probability to enhance the yield is higher. The additional work required to change
the yield shifts the optimal E to higher driving strengths. Under strong driving conditions,
Pa approaches unity, leading all the curves to collapse to a similar value of Θ.

Sophisticated design principles for self-assembly provide us with opportunities to fabri-
cate intricate microscopic structures with exotic material properties. Even so, building the
components that realize these design principles can be prohibitively complicated, for exam-
ple, requiring particles with tightly constrained sizes [184], bond orientations [194, 195], or
geometric structures [196]. The intent of these design principles, of course, is to provide us
with systems that rapidly and robustly relax to the desired stable state.

Typically, the assembly process is carried out or modeled in equilibrium conditions. If
the components can avoid kinetic trapping and rapidly relax to the final equilibrium state,
then the yield of the desired structure will be high. Both in experimental and computational
settings, this is rarely the case. Long-lived kinetic intermediates prevent the system from
accessing the desired state, even if it is lower in free energy, on experimental timescales.
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While we have focused on the relationship between the sphere size ratio and cluster
yield [184], numerous strategies have been employed in an effort to abet relaxation towards
the desired state. Murugan et al. [183], for example, studied the relationship between yield
and the stoichiometric make up of the components. Here, we have taken a distinct perspec-
tive: we rely on external perturbations to drive the system towards the desired state. In
doing so, we transiently drive the system out of equilibrium in such a way that an equilibrium
state becomes more accessible. While the example that we have studied does not require a
complicated protocol for external control, it may be possible to leverage additional freedom
in the design space of protocols, e.g., time-dependent external forces or feedback.

The principal advantage of our approach is its flexibility. Regardless of the components
used in the assembly, or their propensity to become kinetically trapped, we could design a
nonequilibrium protocol to ameliorate slow equilibration. The increased yield comes at a
cost—we must do work on the system at a finite rate to enhance the probability of success.
The trade-off that we find between the dissipated work and the self-assembly yields instanti-
ates a more general phenomenon, the putative energy-speed-accuracy balance of nonequilib-
rium dynamics [50, 160]. It remains a significant future challenge to distill generic principles
for designing nonequilibrium protocols that will enhance the yield.
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Chapter 7

Nonequilibrium Nanoencapsulation

Microorganisms spatially stratify cellular contents to create organization in a chaotic, fluc-
tuating environment. Mesoscopic protein shells called bacterial microcomparments, for ex-
ample, segregate enzymes to amplify throughput in carbon fixation, a process necessary for
the survival of the organism [197–200]. Carbon fixation has become a topic of acute interest
and recently the prospect of re-engineering bacterial microcompartments has been explored
experimentally [201]. Self-assembling microcompartment structures, which are found in a
variety of photosynthetic bacteria, are believed to function as reaction chambers and enhance
enzymatic activity by concentrating the reactants in a confined, nanoscopic volume [202–
204]. A well-characterized member of this class is the carboxysome, a microcompartment
that aids carbon-fixation in cyanobacteria by concentrating the enzyme RuBisCo to near
crystalline densities. The proteinaceous shell that coats the enzymatic core passively filters
reactants to ensure that concentrations of CO2 remain high within the compartment [204].

Experimental studies of the carboxysome structure have highlighted a variety of its sur-
prising characteristics. It forms a highly faceted shell [205–207], consisting of protein cap-
somers with sixfold symmetry. Topological constraints discussed later in this chapter require
that any closed shell must also have a combination of five and sevenfold defects. Unlike
some highly-symmetrical virus shells, the size of the carboxysome does not appear to be
intrinsically templated by its components, which makes its apparent geometry all the more
surprising. Further, it has been reported that the observed structures are monodisperse,
with a size distribution peaked near 100 nm in diameter.

Both the regular geometric structure and tight size distribution of the shell defy expec-
tations based on previous efforts to model the assembly of viruses and other symmetrical
nanoparticles [188, 208]. Generally, kinetic intermediates disrupt an assembly process where
features, like the vertices of the icosahedron in the carboxysome, must be globally coordi-
nated throughout the structure. In order to robustly maintain a regular size and shape, the
probability of incorporating a fivefold defect during the assembly would need to depend very
sensitively on the distance from other defects.

Experiments have attempted to examine the carboxysome assembly process directly,
but have been limited in both spatial and temporal resolution [209]. It has been shown,
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nevertheless, that the biogenesis of a carboxysome likely relies on nucleation from an existing
structure. While the fluorescence microscopy data in Ref. [209] cannot provide detailed
dynamical or spatial information about nucleation mechanism or kinetics, the putative model
put forth suggests that existing shell material may act as a nucleation site for enzymatic
cargo. The fluctuations in the size and shape of the cargo could, in principle, play a significant
role in determining the morphology of the protein shell.

The limited understanding that we have of the factors that control encapsulation has
hindered efforts to rationally design nanoscale compartments [201]. In fact, even the tightly
constrained problem of viral shell self-assembly is not fully understood [178]. In this chapter,
we describe a minimal model of nanoshell assembly to help elucidate the conditions necessary
for successful encapsulation. We use our model to explore the dynamics of the shell growth
process in two distinct scenarios: in the presence of a static, spherical cargo, and in the
presence of a fluctuating cargo. Our expressly coarse-grained model is not meant to reveal
explicit features of carboxysome assembly that may depend on the detailed features of the
proteins involved. Rather, the aim of such a model is to diagnose the necessary physical
ingredients for encapsulation to occur. The general nature of our model confers on us the
ability to make transferable predictions and uncover design principles for the assembly. Such
design principles would facilitate the development of synthetic encapsulations systems with
control over the size and contents.

7.1 A minimal model of nanoshell growth

In order to model these phenomena in great generality, we have built a minimal model that
represents each protein in the shell as a triangular monomer on a lattice governed by an
elastic Hamiltonian, as shown in Fig. 7.1. The assembly dynamics of the nanoshell has two
salient physical features: the chemical potential associated with shell’s constituent proteins
and the elastic energy of the growing shell. This elastic sheet then undergoes a grand
canonical Monte Carlo dynamics that inserts and deletes monomers. To study the growth
of the shell, we initialize the system with a nonequilibrium concentration of monomers and
observe the subsequent relaxation.

Many previous studies have assessed the ways in which elastic properties determine the
low energy structures at constant capsule volume, but have not modeled the discrete growth
events. Work on virus capsid structures has employed continuum elasticity theory in an
effort to predict the shape of the low energy structures in various elastic regimes [210–212].
A discretized representation of the elastic Hamiltonian was used in Ref. [213] to study the
diffusion of defects on thin elastic shells.

A separate line of inquiry has analyzed growth using models of discrete triangulated
representations of elastic membranes, similar to the one described in this chapter. The
Hamiltonians used in those studies impose a global curvature in the elastic energy, and
hence template the size of the resulting structure [214–216]. What is more, the dynamics
violates microscopic reversibility, complicating any physical interpretation of the trajecto-
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ries and resulting structures. Hicks and Henley [216] provide an assessment of the “failure
modes” of the structures that arise from the dynamics of their model. They find that a large
number of kinetically accessible structures result in configurations that cannot form a closed
shell. The physical significance of the observed structures must be disentangled from the
nonequilibrium effects of their irreversible growth dynamics, which can present a challenge
to interpretation. Some of the kinetic traps have been circumvented with an alternative pro-
cedure, described in Ref. [215]. The dynamics remains irreversible and insertion moves are
proposed deterministically at the growing edge with minimal angle, which the authors jus-
tify as growth along a minimum energy path. This procedure mitigates the irregular defect
incorporation observed in previous models [216]. Our approach, on the other hand, focuses
on equilibrium dynamics, so the model we have designed takes care to ensure that detailed
balance is preserved. The local dynamics in our model ensures microscopic reversibility, an
indispensable feature of Markovian dynamics in and out of equilibrium.

7.2 Elastic description of thin shell mechanics

The continuum elasticity theory of a thin plate has been applied to biological protein as-
semblies, such as virus capsids, with surprising fidelity to the experimentally observed struc-
tures [210]. A thin elastic membrane resists both stretching and out-of-plane fluctuations.
We can represent the total energy of a thin elastic membrane as a sum of these two contri-
butions,

H = Hstretch +Hbend, (7.1)

where the terms denote the in-plane stretching energy and the out-of-plane bending energies,
respectively. We define a coordinate system that measures relative displacements,

u(x) = (x1 + u1, x2 + u2, z) (7.2)

which in turn defines a strain tensor,

uij =
1

2
(∂iuj + ∂jui + ∂iz∂jz) , (7.3)

neglecting the terms quadratic in uk. The stretching energy can be expressed in terms of
Lamé coefficients µL and λL and the strain tensor uij,

Hstretch =
1

2

∫
dS

(
2µLu

2
ij + λLu

2
kk

)
. (7.4)

The integral is taken over some parametrization of the surface of the membrane. Familiar
material properties can be expressed in terms of the Lamé coefficients. For example, the
Young’s modulus, which measures the tensile stress relative to the extensional strain of an
in-plane deformation is

Y =
4µL (µL + λL)

2µL + λL

. (7.5)



CHAPTER 7. NONEQUILIBRIUM NANOENCAPSULATION 87

The Poisson ratio, a material characteristic that relates the compression along the direction
of an applied strain to the expansion along a transverse direction, is

ν =
λL

2µL + λL

. (7.6)

These material properties determine, in part, the propensity of a thin elastic shell to “buckle”,
developing visible, aspherical facets.

The bending contribution to the Hamiltonian enforces a quadratic cost to changes in the
local curvature. Written in terms of the mean curvature H, the Gaussian curvature K, and
the rigidities κ̃, κ̃G, the bending energy is

Hbend =
1

2

∫
dS

(
κ̃H2 + 2κ̃GK

)
. (7.7)

The Gaussian curvature is a topological invariant, due to the Gauss-Bonnet theorem; it
is ignored as an arbitrary constant in most analytical calculations [217]. The continuum
description of the membrane is particularly convenient for highly symmetrical objects, for
which some calculations can be performed analytically. However, this formulation of the
energy is not immediately applicable to the discrete growth of a nanoscale shell.

The elastic energy associated with the thin sheet can be discretized and expressed as a
sum over the edges ij of a triangulated surface [218]. The total Hamiltonian is,

H =
ε

2

∑
ij

(lij − l0)2 +
κ

2

∑
ij

1− cos(θij), (7.8)

where ε is the renormalized stretching constant and κ = 2
√

3
3
κ̃ is the renormalized bending

rigidity. The scalars relating the continuous and discrete Hamiltonians arise from a detailed
analysis that involves taking the limit of infinitesimally small edge lengths so that the dis-
cretized Hamiltonian coincides exactly with continuum description of a thin elastic sheet.
Such a calculation [218] exposes the precise relationship between ε and κ and the parameters
of the continuum model. In particular, it has been shown,

Y =
2
√

3

3
ε ν =

1

3
(7.9)

κ̃ =

√
3

2
κ κ̃G = −4

3
κ. (7.10)

It is then possible to choose parameters in the discretized model that are consistent with the
experimentally predicted material properties of protein shells [210].

We associate each triangular face in our discrete lattice with a protein monomer. Because
the deformations of the protein are expected to be small relative to the bending fluctuations
between adjacent monomers, we work in a limit where εl20 � κ. Previous calculations give
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Figure 7.1: A schematic depiction of the vertex move proposal. (a) A vertex is randomly
displaced and the energy difference between the initial and final states is computed. The
move is then accepted or rejected so as to guarantee detailed balance. A schematic depiction
of the monomer insertion move. (b) A new monomer is added to the surface of the growing
structure by randomly selecting a surface edge. The configuration of the inserted monomer
is chosen randomly and the insertion is accepted in a detailed balance fashion.

further guidance on the elastic parameters: if we anticipate well-defined icosahedral struc-
tures, then we need to be in a regime where the ratio of the Young’s modulus to the bending
rigidity, scaled by the radius of the shell, is

Y R2/κ > 154, (7.11)

the point at which a flat disk will be noticeably buckled around a defect. This ratio (7.11)
is called the Föppl-von Kármán number and is a measure of the relative cost of a stretching
deformation to a bending deformation.

7.3 Monte Carlo dynamics of the model

The thermal relaxation of the shell subject to the Hamiltonian discussed in the previous
section can be simulated with a straightforward Monte Carlo dynamics. In each move, a
single vertex v of the lattice is chosen at random. As depicted in Fig. 7.1, a random pertur-
bation in three-dimensional space is made to the selected vertex, giving a new coordinate v′.
The energy difference, ∆E, which can be computed locally, is used in a standard Metropolis
acceptance criterion,

acc(v → v′) = min [1, exp (−β∆E)] . (7.12)

Following this procedure ensures that the configurations sampled in the Markov chain are
consistent with a Boltzmann distribution.
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The Monte Carlo move set for growth of the shell is significantly more involved. In order
that the dynamics satisfy detailed balance, care must be taken throughout to ensure that
every step is reversible and the generation probabilities are properly incorporated into the
acceptance criterion. Our goal is to draw samples from a grand canonical distribution,

p(X,N) = Ξ−1

(
eβµ

λ9

)N
e−βE(X), (7.13)

where Ξ denotes the grand canonical partition function, X gives the coordinates the config-
uration, N is the number of monomers, and the length scale λ establishes a standard state
for the monomer chemical potential µ. The factor λ9 appears in the denominator because
each monomer consists of three connected three-dimensional degrees of freedom. We define
the “activity”,

z =
eβµ

λ9
. (7.14)

Developing a Monte Carlo move set that leaves this distribution invariant requires extreme
care.

The simplest type of growth move that we implement is depicted in Fig. 7.1. First, an
edge at the surface of the growing sheet is selected at random; there are Nsurf possible choices.
A new monomer is proposed by initially generating an “ideal” insertion, i.e., a configuration
that is aligned perfectly with the monomer to which it is attaching with edge lengths close to
the equilibrium values. The newly inserted vertex is subsequently randomly selected within
a volume vb. This final step ensures that the procedure is statistically reversible.

In our model the vertices of bound monomers coincide exactly along the shared edge. The
physical situation we have in mind is that separating such vertices by even a small distance ra
costs a large energy. For a favorable binding energy ε that is constant within the small volume
va = 4πr3

a/3, the affinity K = vae
−βε completely characterizes the equilibrium statistics of

binding. In setting ra = 0, we implicitly take ε → −∞ such that K remains nonzero and
finite. We thus impose a well-defined binding equilibrium without resolving fluctuations
of bound monomers on irrelevantly small scales. The constant K must be appropriately
incorporated into the acceptance criterion for the growth move to ensure detailed balance.

We are working a regime in which the Young’s modulus (7.5) of the thin sheet is large.
A typical displacement of a vertex governed by the Hamiltonian H of Eq. (7.8) is of order,

δ ≈ (βε)−1/2 ≡ ξ, (7.15)

so we take ξ as a natural unit of length. We can then define a dimensionless affinity,

K∗ = Kξ−3. (7.16)

The fusion moves discussed in detail later depend on K∗ and v∗fuse. We want to be working in
a limit where the probability of fission is small. Accordingly, we choose another parameter,

f ∗ ≡ K∗/vfuse∗ � 1. (7.17)
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When f ∗ is large, the probability of accepting a proposed fusion move is large and, inversely,
the probability of accepting a fission move is small.

The move that we have described generates a configuration X ′ from another configuration
X which possesses one fewer monomer. In order to leave the distribution sampled by the
Markov chain invariant, we must have

p(X → X ′)p(X) = p(X ′ → X)p(X ′) (7.18)

The acceptance probability acc(X → X ′) for the insertion of a monomer must incorporate
the generation probabilities gen(X → X ′) and gen(X ′ → X), corresponding to insertion and
deletion, respectively, so that

p(X → X ′) = gen(X → X ′)acc(X → X ′) (7.19)

satisfies Eq. (7.18). We employ the Metropolis criterion for this purpose

acc(X → X ′) = min

[
1,

gen(X ′ → X)P (X ′)

gen(X → X ′)P (X)

]
. (7.20)

In some cases, it may be possible to insert a monomer by adding a single edge to the
system, e.g., adding an edge between the top two vertices in Fig. 7.1. When a surface edge is
selected at random, if a new monomer can be created by adding an edge of length l < lmax to
another surface vertex, we propose the edge insertion move. The number of edges for which
such a move is possible is Nwedge.

The generation probability for a monomer insertion is thus determined by the probability
of selecting an eligible edge for monomer insertion that is not among the Nwedge edges

gen(X → X ′) =
1

vb(Nsurf(X)−Nwedge(X))
. (7.21)

This expression tabulates the probability of choosing a particular surface edge and point
within the volume vb. The reverse move depends on selecting one of the two surface edges of
a monomer with a single bound edge. The generation probability in the reverse direction is

gen(X ′ → X) =
1

Nmono,1(X ′)
. (7.22)

where Nmono,1 is the number of surface edges with a single bound edge in configuration X ′,
i.e., the set of monomers that could have been generated by a monomer insertion move.

The grand canonical probability of the configuration X ′ relative to the initial configura-
tion is

p(X ′)

p(X)
= zK2 exp (−β∆E) , (7.23)

where we have effectively integrated over binding fluctuations on the unresolved scale ra.
The factors of K resulting from this integration account for the binding energy and entropy
of the vertices.
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The energy difference ∆E can be computed locally and involves the elastic energy of the
edges of the new monomer and the interaction with the cargo. The acceptance criterion for
the insertion move is thus

acc(X → X ′) = min

[
1, zK2vb(Nsurf(X)−Nwedge(X))

Nmono,1(X ′)
e−β∆E

]
, (7.24)

which acts as a guarantee of detailed balance.
The probability of proposing the monomer insertion moves with two bound edges depends

only on Nwedge

gen(X → X ′) =
1

Nwedge(X)
(7.25)

The reverse move has a generation probability that is determined by the number of surface
edges that have two bound edges, Nmono,2, the set of monomer edges that could have been
generated by the forward move. The acceptance criterion for insertion moves of this type is

acc(X → X ′) = min

[
1, zK3 Nwedge(X)

Nmono,2(X ′)
e−β∆E

]
. (7.26)

Two nearby edges must also be able to join, to represent the binding of nearby edges.
The likelihood of an edge fusion event is determined by the favorable binding interaction
described above. If there is a pair of unconnected surface vertices v and v′ within a distance
lfuse, we attempt to join the vertices at their midpoint. In order for a fusion move to be
proposed, the two vertices must either share a mutual neighbor or the involved surface edges
must share a surface edge. Using the convention that K estimates the partition function
of the bound vertices, we can specify an acceptance criterion that will lead to a detailed
balance dynamics. The acceptance criterion depends on K and a volume vb of a sphere with
radius lfuse/2,

acc(fusion) = min

[
1,
K

vb
e−β∆E

]
. (7.27)

The energy difference ∆E is due to bond stretching and bending resulting from the vertex
fusion.

The simulations described here are in a regime where the reverse move, which we call
vertex fission, is extremely unlikely. Nevertheless, we specify and implement it to ensure
that we are sampling a well-defined distribution. The fission move is illustrated in Fig. 7.2.
We select an eligible vertex v and choose a random point in the sphere of radius lfuse/2,
with a volume we call vfuse. Not all surface vertices are eligible for fission. However, the
set of fissionable vertices is precisely the set of fusible vertices, so there is no additional
contribution to the acceptance criterion. This constraint only amounts to a detail in the
implementation.

The random point we choose within the volume vb designated as the location of one of
the two new vertices. The other is uniquely determined, as well, because the midpoint of
the vector connecting the new vertices is v. A randomly selected non-surface edge connected
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Figure 7.2: Vertices of the lattice must be able to combine and split. In order to do this
in a way that preserves detailed balance, we choose the fusion point randomly within some
volume vb, depicted in (a). The reverse operation, splitting vertices, requires choosing a pair
of points along a symmetric axis within the volume vb, as shown in (b).

to v is duplicated and the neighbors of v become are split between the two new vertices.
The acceptance criterion for the fission move can be constructed so that the dynamics obeys
detailed balance. Its exact expression is

acc(fission) = min
[
1,
vb
K
e−β(∆E)

]
(7.28)

In practice, no fission moves are observed in the course of a simulation owing to the relatively
large values of K that, in the case of fission, are not counteracted by the activity z.

Our model of nanoencapsulation also includes the molecules within the shell. We model
the cargo as an Ising lattice gas on a simple cubic lattice, allowing it fluctuate as a liquid-
like droplet. Nearest neighbors are coupled through an interaction energy εC and chemical
potential µC,

H = −µC

Nc∑
i=1

σi − εC
∑
〈ij〉

σiσj, (7.29)

where σi = {0, 1} for occupied and unoccupied lattice sites, respectively, and 〈ij〉 indicates
that the sum is taken over nearest neighbors. The typical size and shape of a cargo domain is
determined by the parameters of the lattice model. Fluctuations in the cargo and physically
motivated choices of µ and εC are described in Section 7.5.

We must further specify the nature of the cargo-shell interaction. In biological systems,
any attraction between the proteins in the cargo and the proteinaceous shell will likely be
short-ranged protein-protein interactions. Additionally, steric repulsions ensure that the shell
proteins cannot overlap with the cargo. To capture both features, we specify the cargo-shell
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Figure 7.3: The cargo molecules, represented as a lattice gas, interact with the shell through
an interaction that energetically favors the inward facing normal vectors with a factor −γin.
The lattice site occupied by the outward facing normal vector of a monomer in the shell
carries and energy γout, which serves to bias the shell fluctuations so that it is sterically
occluded by the cargo.
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interaction as follows,

Hint(σi, vj) =


−γin if − n̂j ∈ i and σi = 1

+γout if n̂j ∈ i or vj ∈ i and σi = 1

0 otherwise.

(7.30)

The full interaction is the sum over all i and j of Hint. This interaction is depicted schemat-
ically in Fig. 7.3. There is an energetic benefit if the inward facing normal vector to the
shell is within a cargo-occupied lattice site. Conversely, there is an energetic penalty if the
outward facing normal vector lies within an occupied site.

7.4 Dynamics of defect formation in nonequilibrium

nanoshell growth

Many viruses and bacterial microcompartments are known to consist primarily, if not entirely,
of protein capsomers with sixfold symmetry. These roughly hexagonal tiles cannot coat the
surface of a sphere. The mathematical reason for this is the famous Gauss-Bonnet theorem,
which relates the Euler characteristic of a manifold to its topological genus, i.e., the number
of handles in the structure. Given a triangular tessellation of a topological surface, the
number of vertices V , edges E, and faces F of the tessellation specify its Euler characteristic
χ,

χ = V − E + F. (7.31)

According to the Gauss-Bonnet theorem, the Euler characteristic is a topological invariant,
χ = 2 − 2g, where g denotes the number of handles in a topological surface [217]. For a
sphere, which has no handles, the Euler characteristic is χsphere = 2. Thus, any triangulation
of a sphere has the constraint that V − E + F = 2, a remarkable fact considering that this
must also be true for any topological surface diffeomorphic to a sphere—arbitrary polyhedra,
for example.

In the context that we are considering, we can use this very general result to determine
the possible defect densities. First, we write the total number of faces in terms of the edges
F = 2

3
E, since each edge is shared by two faces. We next note that the total number of

edges can be written in terms of the coordination number of each vertex, E = 1
2

∑N
j=1 Zj,

where Zj denotes the number of bonds of vertex j. The requirement is thus [219],

V∑
j=1

6− Zj = 12. (7.32)

This equation places a precise constraint on the total number of deviations away from sixfold
bond order. In the context of the model we are considering, the energetic penalty for Zj < 5
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Figure 7.4: A fivefold defect distorts the hexagonal lattice by a factor of +2π/6, the an-
gle associated with the missing monomer. This effect can be compensated by a sevenfold
disclination that offsets the distortion with an additional monomer, which inserts material
subtending an angle α. We associate with the sevenfold defect a topological charge −2π/6.

or Zj > 7 is too extreme for these configurations to be observed. As a result, it must be the
case that the difference between the number of fivefold and sevenfold defects is,

N5 −N7 = 12. (7.33)

Determining the configuration of defects on a spherical surface that minimizes the energy is
equivalent to a classic problem in quantum mechanics, the Thomson problem, which asks
for minimum energy electron configurations on the surface of a sphere. This problem has
proved difficult to analyze due to the large number of metastable configurations when the
number of defects is large [220].

The fivefold and sevenfold topological defects balance one another when adjacent, as
shown in Fig. 7.4. A fivefold defect can be introduced into a flat hexagonal lattice by
removing a triangular face subtending an angle s = +2π/6. The angle s is often called the
charge of the defect, because it attracts oppositely charged defects. Removing the wedge of
material introduces strain into the lattice proportional to s, leading, in turn, to a divergence
in the energy that grows as R2, where R measures the radial extent of the sheet [218]. The
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energetic penalty associated with the material removed can be compensated by adding a
triangular face and creating a sevenfold defect. The addition of a sevenfold defect adjacent
to the fivefold defect “screens” the charge by lowering the strain in the lattice. Bowick et al.
[221] argues that, on a spherical surface, the expected number of dislocations pairs that
screen an isolated defect in the thermodynamic ground state should grow as,

Nd =
π

3

(√
11− 5 arccos(5/6)

)
Rc/l0, (7.34)

a prediction which is universal in the sense that it is independent of the microscopic interac-
tion energy. The Coulomb like interaction between defects makes clear the connection to the
Thomson problem: The zero temperature configurations of the defects on a spherical surface
are the solutions of the minimum energy configurations of charges on a spherical shell [221].

Much of the continuum theory describing the shapes of low energy thin elastic sheets
has focused on the case that there are exactly 12 five-coordinated topological defects, but
some studies have looked at higher defect concentrations [213]. Proposed models of the car-
boxysome structure have emphasized potential protein capsomers with fivefold symmetry as
the vertices of the icosahedral shell [198]. A few numerical and experimental studies have, on
the other hand, shown the existence of linear strings of defects, called grain boundary scars
that exist even for equilibrium configurations and in thermodynamic ground states [222–225].
This work characterizing grain boundary scars, suggests, a much richer interplay between
the defects and geometry of the resulting shell. In the stochastic assembly process of bacte-
rial microcompartment formation, this type of defect structure offers an alternative to the
stringent requirement that exactly 12 pentameric capsomers are incorporated into the shell.
Balancing these defects with oppositely charged disclinations offers a route to compensating
additional fivefold defects via Eq. (7.33) and can lead to lower energy structures [221].

We simulated the model described in Section 7.1 to study the dynamics of defect for-
mation in the assembly process. For these simulations, we represented the cargo of the
microcompartment as a static, roughly spherical droplet of radius Rc. We parameterized the
system in a regime where the activity z associated with the shell monomers was sufficiently
low that insertions in the absence of a favorable cargo interaction were rare relative to the
rate of removal. In order to ensure that the dynamics sampled distinct configurations for
each inserted monomer, the dimensionless effective binding affinity K∗ was chosen to be
small enough relative to the activity z so that unbinding could occur with reasonable prob-
ability. Snapshots from a trajectory with Rc = 15l0 are shown in Fig. 7.5. All trajectories
that we collected, Rc = 10l0, 15l0, 20l0 with ten independent runs at each radius, successfully
encapsulated the cargo.

Fivefold defects spontaneously form due to the curvature of the cargo. The system we
are studying is thermal, so fluctuations could significantly alter the defect configurations
predicted from purely energetic considerations. The configurations we observe, nevertheless,
are qualitatively in agreement with the structures observed in theoretical studies of the
ground state. The defect structures, shown in Fig. 7.6, form local, grain boundary like chains
of dislocation pair in regions of high curvature. The incorporation of additional topological
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Figure 7.5: Cargo surface shown in transparent green. (a) t = 250 × 104 MC sweeps. (b)
t = 500× 104 MC sweeps. (c) t = 750× 104 MC sweeps. (d) t = 1000× 104 MC sweeps.
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Figure 7.6: A configuration from an encapsulation trajectory around a static cargo with
Rc = 15. Fivefold defects are with topological charge +2π/6 are shown in red. Sevenfold
defects with topological charge −2π/6 are shown in blue.

defects suppresses the excess strain associated with deforming the thin elastic sheet around
a disclination.

The dynamics of defect formation are shown in Fig. 7.7. In the conditions we considered,
defect formation events appear to be uncorrelated at long times. This fact is apparent from
the clear exponential time lag in Fig.7.7 (b). At short times, the dynamics may be more
involved. The defect trajectories, Fig. 7.7 (a) show that many defects are removed shortly
after being introduced into the system. A detailed description of the dynamics of defect
formation will involve local geometric and energetic considerations.
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Figure 7.7: (a) Trajectories of the number of fivefold defects N5 during the encapsulation
of a static cargo with Rc = 15. (b) A histogram of waiting times between the formation of
fivefold defects, the blue dashed line is a linear fit that clearly shows the exponential decay
of waiting times consistent with a Poisson distribution.

7.5 Assembly around a fluctuating cargo

The spontaneous assembly of the carboxysome structure features dynamics of the cargo in
addition to the shell. As mentioned in the introduction to this chapter, little is currently
understood about the carboxysome self-assembly process from the biological point of view.
The model we have developed suggests several simple physical principles that might govern
the biogenesis of regularly sized nanoscale capsules.

In order for the size control to be robust, it should be the case that spontaneous nucle-
ation of the cargo is rare. If the cargo can spontaneously nucleate and grow to large sizes,
then it may deplete the local environment entirely of cargo material and the size will only
be constrained by the stochastic density distribution of material in environment. Alterna-
tively, spontaneous cargo nucleation could lead to many small structures with uncontrolled
sizes. In the context of our model, depletion is not modeled, so the cargo would continue
to grow without bound until entirely encapsulated. Because the bending energy of an icosa-
hedral shell scales as ln(R2

c), the free energetic contributions of shell-shell, cargo-cargo, and
cargo-shell interactions dominate when the number of monomers is finite. As a result, we
expect that microcompartments exist as nonequilibrium structures. The kinetics of encap-
sulation may compete with the kinetics of spontaneous cargo growth to achieve structures of
a characteristic size. Here, we explore the conditions in which the resulting nonequilibrium
structures have the faceted shape and narrow distribution of sizes observed in images of the
carboxysome.

We also expect the growth of the shell to have slow nucleation dynamics in the absence
of an interaction with the cargo. The cost of creating curvature in the assembling sheet
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Figure 7.8: A trajectory demonstrating the cooperative nucleation of the cargo and the shell.
Curvature in the shell is spontaneously generated by the surface tension of the cargo droplet
on the initially flat shell. As defects are incorporated, the shell grows to entirely envelop the
cargo. (a) t=50000 MC Sweeps (b) t = 150000 MC Sweeps (c) t=350000 MC Sweeps (d)
t=400000 MC Sweeps.
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Figure 7.9: Histogram of (a) the number of monomers in the closed shell at the end of an
assembly trajectory, and (b) the number of cargo molecules. These simulations were run
with lnK = 10, ln z = −50, γ = 40, ε = 1200, κ = 40, µC = −16, εC = 4.

is prohibitively high for spontaneous shell formation. This emphasizes that some structure
must exist to template the curvature that leads to spontaneous defect formation. Empirical
evidence that we have gathered suggests that cargo is a necessary condition for large, closed
shells to form. Even in the case that we incorporate defects at a tunable rate, it is unlikely
that the defects spontaneously organize so that the structure can meet itself to seal the shell,
an observation emphasized by the model proposed in Ref. [216].

Cooperation between the shell and cargo may provide a strategy that achieves both
control of the size and shape of the carboxysome structure as well as robust, high yield
encapsulation. In the case that growth of the isolated components is rare, the nature of
the interaction between the carboxysome and its cargo could dictate the growth dynamics.
What is more, experimental evidence suggests that existing carboxysome structures may
acts as the nucleation site for subsequent carboxysome formation [209].

We explored this putative mechanism for size and shape control by parameterizing our
model in a regime where spontaneous growth of the isolated cargo or isolate shell was rare.
In this regime, we found that the system relaxes to an enclosed structure with high probabil-
ity. As shown in Fig. 7.8, the encapsulation proceeds by initially forming a droplet of cargo
material on the shell proteins. The favorable interaction between the shell and cargo subse-
quently induce curvature in shell as it grows around the hemispherical droplet. Throughout
the trajectory, defects form and anneal away as the shell relaxes. At the end of the trajectory,
grain boundaries in the shell heal to close off the shell, cf. Fig 7.8 (c) and (d).

In addition to a high success rate, this mechanism of encapsulation yields structures that,
like bacterial microcompartments, are relatively monodisperse. In Fig. 7.9 (a), we show a
histogram of the number of monomers incorporated into the shell of the assembled structure
for 100 independent assembly trajectories. The distribution is peaked near the average
(1200 monomers) and the number of cargo, shown in Fig. 7.9 (b), has a similarly shaped
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distribution. A tail of the distribution, indicative of rare, larger structures, is discernible
from the statistics that we have gathered. However, there is not sufficient experimental
data to confirm whether or not such a feature should be expected in the size distribution of
carboxysome structures.

The potential applications of synthetic microcompartments are widespread and may have
a significant technological impact, e.g., as a scalable carbon-fixation scheme. However, a
sophisticated understanding of the necessary conditions for successful assembly of these
nanoscale capsules could greatly enhance efforts to repurpose these biological entities. Our
results provide a simple framework for characterizing the assembly process. We have demon-
strated that encapsulation can be achieved when the propensity for nucleation of both the
cargo and shell proteins is low. Our results also elucidate strategies for controlling the size
of fully formed capsule by modulating the interaction strength.
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Appendix A

Stochastic Calculus

Models of nonequilibrium dynamics often abstract the environment into a random spectrum
of perturbations, represented as a stochastic process. Each realization of the dynamics
samples a noise history from a probability distribution which, in general, depends on the
length of the trajectory and the model used to represent the noise. In many applications,
we want to collect trajectories from this probability distribution to compute distributions
of dynamical observables. Mathematical ambiguities arise when computing expectations
over the probability distribution of stochastic trajectories, so we must employ the tools of
stochastic calculus to make such calculations rigorous.

We take, as a motivating example, the computation of the heat that flows from the
system into the environment over the course of a trajectory. Let Xt denote the trajectory
where Xt : [0, T ]→ Rn defines the map from a time interval into the full phase space of the
system. A generic equation of motion for the trajectory is of the Langevin form,

dXt = (−∇V (Xt, t) + fext(Xt, t)) dt+
√

2β−1b(Xt, t)dWt. (A.1)

In this equation V (x, t) is a time-dependent, conservative potential energy function, fext(t) is
a time-dependent, non-conservative external force, β is the inverse temperature, and 1

2
bbT ≡

D is a space- and time-dependent diffusion tensor. The precise mathematical meaning of
dW is discussed in the next section. The material presented here draws on a number of
sources, primarily Refs. [226–229].

A.1 The Wiener process

For the noise in a Langevin equation, the random process W (t) should satisfy a number of
properties in order to be consistent with our physical expectations. The random forces from
the environment, if they are frequent and of a magnitude smaller than the direct forces in
the Langevin equation, will manifest as a Gaussian process due to the central limit theorem.
We would therefore like W (t) to be a Gaussian process with the following properties,

• 〈Wt〉 = 0, ∀t ≥ 0
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• W (t1)−W (t0) ∼ N (0, t1 − t0), for t1 > t0 ≥ 0

• Increments W (tk) −W (tk−1) are statistically independent of distinct, disjoint incre-
ments.

These three properties characterize standard Brownian motion, also known as the Wiener
Process. As should be expected from our knowledge of diffusion processes, the variance
grows linearly in time, 〈W 2

t 〉 = t.
The random forces from the fast degrees of freedom in fluctuating environment appear

in the stochastic differential equation as a “derivative” of Wt with respect to time. We call
the process dWt a white noise process because it adds uncorrelated noise to the dynamics.
Unfortunately, the derivative along a sample path of the Wiener process is pathological.
Using the notion of Hölder continuity, it can be shown that paths drawn from Wt are nowhere
differentiable [228]. This pathology leads to a number of important formal considerations
when defining the solution to Eq. (A.1)

Xt = X0 +

∫
−∇V (Xs, s) + fext(Xs, s) ds+

∫
b(Xs, s)dWs. (A.2)

The interpretation of the integral with respect to the white noise process has consequences
for the solution Xt, i.e., distinct choices of the stochastic calculus employed lead to distinct
physical systems. We can write the stochastic integral

I =

∫
b(Xs, s)dWs, (A.3)

in terms of a Riemann sum to illustrate the choice that we have to make,

I ≈
n−1∑
i=0

b(Xi, ti)(Wi+1 −Wi). (A.4)

In the expression above, the function b(X, t) is evaluated at time ti. Taking the mean-squared
limit n → ∞ defines the Itō integral. Mathematically, the Itō conventions afford a number
of advantageous properties because b(X, t) is “non-anticipating” in the expression for I.

An alternative commonly encountered in the physics literature is the following dis-
cretizaiton,

IS ≈
n−1∑
i=0

b(Xi+1, ti+1) + b(Xi, ti)

2
(Wi+1 −Wi). (A.5)

In this expression, the integral defined as a Riemann sum that evaluates the function at the
midpoint of the random displacement Wi+1 −Wi. The subscript S is used to indicate that
we are using the Stratonovich conventions for stochastic integration. There are a number
of justifications for giving preference to the Stratonovich calculus for physical problems. In
particular, it has been suggested that the Stratonovich approach more effectively models
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the fact that random environmental effects have short, but non-zero, correlation times [230].
However, a pragmatic reason for the preference is illustrated in the following section—the
Stratonovich conventions obey the same basic rules encountered in ordinary calculus.

For our purposes, the Stratonovich integral with respect to a stochastic process has the
advantage of being time-symmetric. Physically measurable quantities like work and heat
possess this inherent microscopic symmetry, so, for diffusions, we define the heat flow in
terms of a Stratonovich product,

Q = −
∫ T

0

∇V (Xt, t) ◦ dXt, (A.6)

where we use the notation ◦ to emphasize that the integral must be interpreted using the
Stratonovich calculus.

A.2 Itō and Stratonovich conventions

On average, the Itō integral vanishes for a non-anticipating function g,〈∫ t

0

g(t′)dWt′

〉
= 0. (A.7)

This is not the case for the Stratonovich calculus. The two conventions also differ when it
comes to changes of variables. Let

dXt = b(Xt, t)dWt. (A.8)

In the Stratonovich convention differentials transform according to the standard rules of
calculus

dg =
dg

dx

(
g(Xt, t)dt+ b(Xt, t)dWt

)
. (A.9)

Hence, there are no special considerations upon change of variables. On the other hand, Itō
rules lead to a distinct expression for the differential,

dg =
∂g

∂t
dt+

1

2

∂2g

∂t2
dt+ · · ·+ ∂g

∂W
dW +

∂2g

∂W 2
dW 2 + . . . (A.10)

We retain only terms of order dt, which includes those proportional to dW and dW 2, with
all other terms having higher order, and,

dg =

(
∂g

∂t
+

1

2

∂2g

∂W 2

)
dt+

∂g

∂W
dW. (A.11)

The additional term 1
2
∂2g
∂W 2 is sometimes called the Itō drift.
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The additional “drift” appears in the Fokker-Planck equation associated with an Itō
Langevin equation. The Fokker-Planck equation describes the evolution of the probability
distribution p(Xt, t|X0, t0). For an arbitrary function g,

d〈g〉
dt

=

∫
dX g(X)

∂p(X, t|X0, t0)

∂t
, (A.12)

integrating by parts twice gives an expression for the Fokker-Planck equation,

∂tP (X, t|X0, t0) = − ∂

∂X
(g(X, t)) p(X, t|X0, t0) +

1

2

∂2

∂X2
b(X, t)b(X, t)Tp(X, t|X0, t0).

(A.13)
Note that this expression indicates that the statistics of the time evolution of an Itō Langevin
equation are distinct from those of a Stratonovich equation.

A.3 Converting between Stratonovich and Itō

In many cases, it is mathematically preferable to work with the Itō calculus. However,
the stochastic differential equations encountered in physics often require the Stratonovich
interpretation. As discussed in Section A.1, the definitions of work and heat flow in a
nonequilibrium diffusion process rely on the time-symmetric Stratonovich product. In order
to ensure that the Itō process studied is statistically identical to the Stratonovich stochastic
differential equation, we can simply add an additional drift term to the original Stratonovich
stochastic differential equation in order to guarantee the same Fokker-Planck equation,

dXt =

(
−∇V (Xt, t) + fext(Xt, t) +

1

2
b(Xt, t)∂Xb(Xt, t)

)
+ b(Xt, t)dWt. (A.14)

It is easy to check that Itō equation above recovers the same Fokker-Planck equation as
Eq. (A.1) under the Stratonovich interpretation. This conversion can be reversed symmet-
rically if one wants to convert from Itō to Stratonovich, as well.

A.4 Girsanov formula and change of measure

The Girsanov formula establishes the conditions under which two stochastic differential equa-
tions are equivalent, in the sense that the probability measures associated with paths arising
from these stochastic processes have equivalent measures. A formal definition of this concept
is given in the next section. Informally, we call two probability measures equivalent if any
event with non-vanishing probability under one measure also has non-vanishing probability
under the second measure. For the Wiener process, the probability of a trajectory can be
written as a product over the Gaussian-distributed increments,

P (Wt) =
N∏
i=1

(
√

2π∆ti)
−1/2 exp

(
−∆W 2

i

2∆ti

)
. (A.15)
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The continuous representation of process gives a path integral formulation of the weight.
Girsanov’s Theorem says that, given two stochastic differential equations,

dXt = f(t)dt+ g(t)dWt (A.16)

dYt = h(t)dt+ k(t)dWt (A.17)

they are equivalent if g(t) = k(t), that is, if they have the same diffusion tensors. From this
perspective, we can view the latter equation as a stochastic differential equation with the
drift of dXt, but a different measure,

dYt = f(t)dt+ g(t)dVt, (A.18)

where the measure of the new process is,

P (Vt) = exp

(∫ T

0

f(t)− a(t)

b(t)
dVt −

1

2

[
f(t)− a(t)

b(t)

]2

dt

)
P (Wt). (A.19)

The exponential factor can be viewed as a weight that expresses the likelihood of the noise
history required to achieve the drift f(t) under the dynamics of the process defined by dYt.
The change of measure is related to the Radon-Nikodym derivative, discussed in the next
section.

A.5 Radon-Nikodym derivative

A formal treatment of the Girsanov theorem makes clear its relation to the Radon-Nikodym
theorem. In order to state the Radon-Nikodym theorem, we require some language from
probability theory that is not used elsewhere in this thesis, but can be found in, e.g., Øksendal
[226]. We include these formal definitions to make explicit the meaning of Eq. (3.11). We
let (Ω,F , P ) be a probability space, and let {F}t≥0 be a filtration on (Ω,F). We formalize
the notion of equivalent measures introduced in the previous section by defining “absolute
continuity”. Let T > 0, then we say that a measure Q is absolutely continuous with respect
to P if

P (F ) = 0 =⇒ Q(F ) = 0, ∀F ∈ FT . (A.20)

The Radon-Nikodym theorem states that Q is absolutely continuous with respect P if and
only if there exist an FT measurable random variable ZT (ω) such that,

dQ(ω) = ZT (ω)dP (ω). (A.21)

This expression defines the Radon-Nikodym derivative, typically written,

dQ

dP
= ZT . (A.22)
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The re-weighting factor, Eq. (A.19) in the previous section is one example of a more gen-
eral formulation of the Girsanov theorem in terms of Radon-Nikodym derivatives. These
measures are particularly useful in the context of statistical physics because the appear in
computations of the entropy production and of large deviation rate functions for nonequi-
librium diffusions [27, 42, 75].
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