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Graphs and Directed Graphs
• Graphs are objects comprising of

a vertex set and an edge set,
where the edges connect the
vertices.

• In a directed graph, or digraph,
the edges (called arcs) are
assigned directions and are
treated as ordered pairs.

• Each different way to assign
directions to the edges is called
an orientation.

• The complete digraph on n
vertices, denoted K∗

n, is the
digraph with the arcs (a, b) and
(b, a) between every pair of
vertices a and b.

• The number of arcs in K∗
n is

n(n − 1).
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Digraph Decompositions

• If D and H are digraphs with D a subgraph of H, then a
D-decomposition of H is a partition of the arc set of H into
subgraphs isomorphic to D, called D−blocks.

• The spectrum for a digraph D is the set of all n for which a
D-decomposition of K∗

n exists.
• Let V (K∗

n) = Zn and let D be a subgraph of K∗
n. Define

rotating D or clicking D as the isomorphism i 7→ i + 1 for
each vertex in V (D).

• A D-decomposition of K∗
n is cyclic if clicking D preserves the

D-blocks of the decomposition.
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Some Background and Previous Results
Hartman and Mendelsohn (1986) found the spectra for all
subgraphs of K∗

3 .1

1A. Hartman and E. Mendelsohn, The Last of the Triple Systems, Ars Combin. 22 (1986), 25-41.
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Some Background and Previous Results
Bunge et al. (2017)– submitted found spectra for almost all of the
below 10 orientations of K4 − e.2
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2R. C. Bunge, B. D. Darrow Jr., T. M. Dubczuk, Mentor, Competition Entrant, G. L. Keller, G. A. Newkirk,
and D. P. Roberts, On Decomposing the Complete Symmetric Digraph into Orientations of K4-e,
Discussiones Mathematicae-Graph Theory, submitted.
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Our Research Question

• We want to find the spectrum for all D such that D is an
orientation of K4 − e with a double edge.
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• When the graph is oriented, one of the two double edges from
w to y must be directed towards w and the other one must be
directed towards y.

• The digraphs are named using the conventions in An Atlas of
Graphs by Read and Wilson.
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Some Useful Observations

The orientation of a digraph D may be reversed by changing the
direction of the arrow on each arc. We denote the reverse
orientation as Rev(D).
Observe that if D and H are digraphs, then a D-decomposition of
H exists if and only if a Rev(D)-decomposition of Rev(H) exists.
Since K∗

n
∼= Rev(K∗

n), we have:
Observation
If D is a digraph, then D decomposes K∗

n if and only if Rev(D)
decomposes K∗

n.
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Our Digraphs

After writing out the 16 possible orientations and taking out any
digraphs that were isomorphic and/or reverses of each other, we
obtained 5 digraphs of interest:
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Necessary Conditions for Digraph Designs

The following are the necessary conditions for a D-decomposition
of K∗

n to exist.
Order condition: |V (D)| ≤ n.
Size condition: |E(D)| divides n(n− 1).
Degree condition: Both gcd{outdegree(v) : v ∈ V (D)} and

gcd{indegree(v) : v ∈ V (D)} divide n− 1, which is
both the indegree and outdegree of every vertex in
K∗

n.

• Need 6|n(n− 1) by condition 2. Thus n ≡ 0, 1, 3, or 4
mod 6.

• Need n ≥ 4 by condition 1.
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D110-Decomposition of K∗6

We now demonstrate some designs for small n which use the
aforementioned clicking mechanism.
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D135-Decomposition of K∗7
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Main Idea
• Not all decompositions need to be cyclic; some can be

manual. Finding these manual decompositions was aided by a
computer.

• A digraph D may be considered numerically as a set of
ordered pairs (Indegree, Outdegree) for each vertex.

• K∗
6 may be represented as
{(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5)}.

• D135, which is below, may be represented as
[w, x, y, z]→ {(2, 2), (1, 1), (2, 2), (1, 1)}.
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Main Idea

• Decompositions can be considered similarly by "adding" the
set of ordered pairs corresponding to each D−block to create
the graph we wish to decompose.

• The set can be "permuted" in any way.
• To decompose K∗

6 with D135, start with
{(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)}.

• Permute the set: w → 5, x→ 3, y → 6, z → 4.
• Add the permutation to the graph, which then becomes
{(0, 0), (0, 0), (1, 1), (1, 1), (2, 2), (2, 2)}.
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Manual D135-Decomposition of K∗6

• {(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)}
• {(0, 0), (0, 0), (1, 1), (1, 1), (2, 2), (2, 2)}
• {(2, 2), (1, 1), (1, 1), (1, 1), (4, 4), (3, 3)}
• {(3, 3), (1, 1), (3, 3), (1, 1), (5, 5), (5, 5)}
• {(4, 4), (3, 3), (4, 4), (3, 3), (5, 5), (5, 5)}
• {(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5)}

14 / 21



Introduction Research Question Basic Results Computer-Generated Results General Results Conclusions Bibliography

Code Algorithm

• The code does the above process backwards: it starts at the
end product (i.e. {(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5)})
and subtracts set permutations until we reach
{(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)}.

• The code also uses a memoization technique in order to
reduce runtime.

• In the memoization technique, the code stores previous failed
runs so it does not have to recompute the same negative
result again in the future.

• Many important building blocks were found using the code.
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Impossibility Results

• There does not exist a D106- decomposition of K∗
6p or K∗

6q+3
for any p ≥ 1, q ≥ 1.

• There does not exist a D118- decomposition of K∗
6p or K∗

6q+4
for any p ≥ 1, q ≥ 1.
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Impossibility Results–Example Proof

• There does not exist a D118- decomposition of K∗
6p or K∗

6q+4
for any p ≥ 1, q ≥ 1.

• Apply necessary condition C, which is:
• Both gcd{outdegree(v) : v ∈ V (D)} and

gcd{indegree(v) : v ∈ V (D)} divide n− 1.
• gcd{outdegree(v) : v ∈ V (D118)} = gcd(2, 2, 2, 0) = 2. By

condition C, if a D118- decomposition of K∗
n existed, then we

must have 2|(n− 1). Thus, (n− 1) ≡ 0 mod 2. However,
(6p− 1) ≡ (6q + 3) ≡ 1 mod 2 6≡ 0 mod 2, so the necessary
condition fails and thus there does not exist a D118-
decomposition of K∗

6p or K∗
6q+4 for any p ≥ 1, q ≥ 1.
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Blow-up Constructions

• In building general constructions from small cases, we utilize the
following theorems from previous literature:3

• If n is odd, then a {K3, K5}-decomposition of Kn exists.
• The necessary and sufficient conditions for the existence of a

K3-decomposition of Ku×m are
(i) u ≥ 3,
(ii) (u− 1)m ≡ 0 (mod 2), and
(iii) u(u− 1)m2 ≡ 0 (mod 6).

• If u ≥ 3 and u ≡ 0 (mod 3), then there exists a K3-decomposition
of Ku×2,4.

• Let m, r, s, t, u1, u2, . . . , um all be positive integers. If there
exists a {Kr, Ks}-decomposition of Ku1,u2,...,um

, then there also
exists a {Kr×t, Ks×t}-decomposition of Ktu1,tu2,...,tum .

3C. J. Colbourn and J. H Dinitz (Editors), Handbook of Combinatorial Designs, 2nd ed.,
Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
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Blow-up Constructions

• If n ≡ 0 mod 6 and n ≥ 6, then a (K∗
n, D) design exists for

D ∈ {D135}.
• If n ≡ 1 mod 6 and n ≥ 7, then a (K∗

n, D) design exists for
D ∈ {D135}.
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Conclusions and Future Work

• We were able to make general constructions and impossibility
arguments for some of the cases.

• The majority of cases produced partial results.
• Our code could be optimized to reduce runtime and memory

usage, as both were impediments when trying to brute-force
through larger cases.
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