FeCo₂O₄ as an Anode Material for Lithium Ion Batteries

Chelsea <u>Wong</u> Jiahui National Junior College, Singapore

Source: http://www.mythosetregia.com/2016/11/dead-batteries.html

FeCo₂O₄ as an Anode Material for Lithium Ion Batteries

Chelsea <u>Wong</u> Jiahui National Junior College, Singapore

What are Lithium Ion Batteries (LIBs) good for?

Commonly used in portable electronic appliances due to their:

- High energy density
- High power
- Ability to go through multiple charge-

Source: https://www.linkedin.com/pulse/my-quest-towards-finding-right-combination-electronic-asghar

What are Lithium Ion Batteries (LIBs) good for?

Source: https://www.valuewalk.com/2016/08/surging-demand-lithium-ion-batteries/

What are some disadvantages of LIBs?

- Low capacity retention (High capacity fade)
- High production cost
- Unsafe

Research Goal

- Tackle the problem of low capacity
- Create an anode that has a higher capacity than Graphite (Commercial anode)

Why FeCo₂O₄?

- Theoretical capacity of 789mAh/g
- Earlier work showed FeCo₂O₄ synthesised by the urea combustion method has an initial capacity of 827 mAh/g
- Use low cost methods:
 - Molten Salt Method (MSM)
 - Citric Acid Combustion Method (CAC)

Characterisation

X-Ray Diffraction (XRD) Phases

Scanning Electron Microscopy (SEM) Surface Morphology

Characterisation

• X-Ray Diffraction (XRD) \rightarrow Phases

XRD Pattern of FeCo₂O₄ synthesised by MSM

Characterisation

- Scanning Electron Microscopy (SEM)
- Identify structure and surface morphology

Molten Salt Method

- Nearly spherical particles can be seen.
- Average size of the particles is around 0.5 micrometers

- Porous structure
- Fusion of irregular particles

Citric Acid Combustion

Coin Cell Pressing

Coin cell was assembled and pressed in argon filled glove box

Battery Testing

Galvanostatic Cycling

Electrochemical Impedance Spectroscopy

Cycle Number (Step)	Previously Reported (FeCo ₂ O ₄)	1 (Discharge)	2 (Discharge)
Capacity / mAh/g	827	≈1490	≈1025
Cycle Number (Step)	Previously Reported (Graphite)	5 (Discharge)	10 (Discharge)
Capacity / mAh/g	372	914.05	859.09

Graph of Voltage against Capacity for 1st, 2nd, 5th and 10th Charge-Discharge cycles (CAC)

Cycle Number (Step)	Previously Reported (FeCo $_2O_4$)	1 (Discharge)	2 (Discharge)
Capacity / mAh/g	827	≈1400	598.55
Cycle Number (Step)	Previously Reported (Graphite)	5 (Discharge)	10 (Discharge)
Capacity / mAh/g	372	431.15	379.45

Graph of Charge-Discharge Capacities against cycle number and previously reported capacity graphs (MSM, CAC, previously reported by Sharma et. al and graphite by Li Jun et. al)

Nyquist Plot of impedance on complex plane (MSM) R_{ct} is approximately 180Ω Nyquist Plot of impedance on complex plane (CAC) R_{ct} is approximately 150 Ω

Conclusion

- Successful synthesis and characterisation of FeCo₂O₄
- Both have potential to replace graphite
 - High 1st cycle capacity, but high mean capacity fade and $\rm R_{ct}$
- MSM proved to be a more effective method of synthesis
 - MSM had much higher cyclic stability than by CAC
 - Could be due to structural and morphological differences affected by purity of the sample

Future Work

- Investigate the usage of different methods or metal salts to synthesise FeCo₂O₄ (Chemical/ Physical)
- Investigate the effect of varying the temperature of melting the reactants of $FeCo_2O_4$
- Investigate why FeCo₂O₄ could have an experimental capacity so much greater than previously reported
- Investigate the introduction of a carbon coating on the anode

Acknowledgements

The group would like to thank:

- Our research mentor, Dr. Reddy
- Our teacher mentor, Mr William Phua
- All members of the Advanced Batteries Lab and National Junior College

Key References

- Reddy, M. V., Rao, G. V., & Chowdari, B. V. (2013). Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. *Chemical Reviews*, *113*(7), 5364-5457. doi:10.1021/cr3001884
- Darbar, D., Reddy, M., Sundarrajan, S., Pattabiraman, R., Ramakrishna, S., & Chowdari, B. (2016). Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. *Materials Research Bulletin*, 73, 369-376. doi:10.1016/j.materresbull.2015.09.025
- Sharma, Y., Sharma, N., Subbarao, G., & Chowdari, B. (2008). Studies on spinel cobaltites, FeCo₂O₄ and MgCo₂O₄ as anodes for Li-ion batteries. *Solid State Ionics*,179(15-16), 587-597. doi:10.1016/j.ssi.2008.04.007
- Reddy, M., Tung, B. D., Yang, L., Minh, N. D., Loh, K., & Chowdari, B. (2013). Molten salt method of preparation and cathodic studies on layered-cathode materials Li(Co0.7Ni0.3)O2 and Li(Ni0.7Co0.3)O2 for Li-ion batteries. *Journal of Power Sources, 225, 374-381. doi:10.1016/j.jpowsour.2012.07.009*
- Li, J., Murphy, E., Winnick, J., & Kohl, P. (2001). Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. *Journal of Power Sources,102*(1-2), 294-301. doi:10.1016/s0378-7753(01)00821-7

