“What's The Buzz?
A fun, interdisciplinary, hands-on activity with circuits, engineering, and bees

Christine Moskalik, B.S., M.S.
Illinois Mathematics and Science Academy in Aurora, IL
Curriculum and Professional Development Specialist
Center for Teaching and Learning

cmoskalik@imsa.edu // (630) 907-5961
Agenda

• Background

• Facilitator's Guide & 5e Model
 • **Engage** – “How do things move?”
 • **Explore** – circuit basics & energy transfer
 • **Explain** – apply concepts while building brush bot
 • **Elaborate** – “How can we model the role of bees in flower pollination?” – The Waggle Dance & Zip-line
 • **Evaluate** – formative/informal assessments
 • (think of ways you can create assessments for your own students)

• Wrap-up
Background

- Who are you? Who am I?
- IMSA’s Center for Teaching and Learning
- Student STEM enrichment & outreach
- Part of a pilot for 2nd graders
 - Hour 1 (bee bots – circuits, energy transfer, engineering)
 - Hour 2 (bee communication and hive hierarchy)
- Opportunity to extend across STEM disciplines (and beyond)
- Funded through a ComED Community Education grant through IMSA Steve and Jamie Chen Center for Innovation & Inquiry Center
Today

• Emphasizing: Explore, Explain & Elaborate

• Engage and Evaluate – discuss as time permits
 • Be thinking of strategies that would work with your own students
 • Model Socratic, inquiry-based strategies that we emphasize in our enrichment setting

• NOTE: These activities were originally done in ~90min with three student helpers/teacher assistants
Supplies

ALSO
• Scissors
• Mounting tape

Optional:
• Googly eyes
• Craft glue
Engage

• Introduce the first essential question:

 How do things move?

• Emphasize answers:
 * Some force
 * Energy

Explore

• Distribute 3v coin battery and motor
 * What are your observations?
 * Why do you think there are two wires?
 * Why do you think there are two different sides of the battery?
 * Can you make the motor move?
 * When did the motor not work?
 * Did the motor stay on the whole time?
 * What can you do to stop it?
Circuit Basics & Energy Transfer

• Path for energy flow
• Energy Source (battery)
 • Potential energy
 • Relate to food we eat
• Conductors (wires)
 • Allows for energy transfer
• Load (motor)
 • What we are powering
• Switch
 • On/off
 • Open vs. closed circuits
Explore – cont’d

- Additional materials distributed
 - Toothbrush tip
 - Mounting tape
 - Bee “body”
 - coffee straw, segment
 - 2 yellow 1” pom pom
 - 1 black ½” pom pom
 - Bee “wings” & “stripes”
 - Black pipecleaner
 - (Googly eyes)
 - (Glue)
 - Small, clear rubber bands

- Students planned how they could build a bee-bot using these materials
Bee body Prep

• Using an Awl, pierce center of pom pom and slide onto awl
• Place coffee straw on pointed end of awl
• Slide pom pom off awl & onto straw
• Repeat until body complete (2 yellow, 1 black pom pom)
Explain: 2 challenges

1. Make a brush-bot that moves and remains upright
2. Decorate a brush-bot to look like a honey bee

(adapted from Monsanto, 2017).

Before building:

- How will you know your brush bot is on?
- Is that an open or a closed circuit?
- What is the load?
- How will you assemble your brush bot?
- Where will the energy come from?
Explain: Two phases

First (prep for phase 2)
- Decorate bee body
- Add wings/stripes
- Add googly eyes
- Set aside to dry (bees are “resting”; related to energy concepts from before)
- Add to completed brush bot later, using small rubber bands

Use questioning strategies along the way
- Promote inquiry & risk-taking

PHASE 1
- Build a brush bot
- How can you build a brush bot?
 - Toothbrush
 - Motor
 - Mounting tape
 - Battery
- Does it move?
- Can it stay upright?
- What can you do to change/improve it?
Elaborate

• Close your circuit & observe what happens

• **Bee Video**

• How does our model represent the Waggle Dance?

• Zip-line time!!
Evaluate

• Formative/informal checkpoints along the way
 • Questioning strategies
 • Recalling
 • Explaining
 • Students applying knowledge progressively

• Summative assessment ideas:
 • What are some of your ideas?
 • Writing prompts; diagrams/label (circuits, bee/insect anatomy); reflections (oral, written, drawings); etc.
NGSS

PE: 2-LS2-2. Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Connections to Classroom Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Engineering Practice</td>
<td></td>
</tr>
<tr>
<td>• Developing and using models</td>
<td>Students created and used a model to explore honey bee communication (the Waggle Dance) and its role in pollination.</td>
</tr>
<tr>
<td>• Asking and Answering questions</td>
<td>Students were asked a variety of questions along the way (examples provided in text); students addressed our essential question of “how do things move” using all the described activities.</td>
</tr>
<tr>
<td>• Constructing explanations and Designing solutions</td>
<td>Students were challenged to explain the functioning of their brush-bot using the circuitry language/terminology to which they were introduced; students were challenged to explain how bees communicate and pollinate plants.</td>
</tr>
<tr>
<td>Disciplinary Core Idea</td>
<td></td>
</tr>
<tr>
<td>• LS2.D - Social Interactions and group behavior</td>
<td>Students, through modeling with their bee-decorated brush-bots, explored how honey bees use a special dance to communicate with others bees about the location of a food source (flower patch) which, when visited by the bee colony members, results in pollination.</td>
</tr>
<tr>
<td>• PS3.D - Energy in Chemical Processes and Everyday Life</td>
<td>Students cited examples of items at home that require power/an energy source; students described that they get energy from food which powers their own movements; students related their need for food energy to the food energy required by the bees (pollen, honey).</td>
</tr>
<tr>
<td>Crosscutting Concept</td>
<td></td>
</tr>
<tr>
<td>• Matter and energy</td>
<td>Students explored how energy from a battery can be transferred to a motor (load, such as our motors); students noted that bees collect and create the food which takes energy, and also results in pollination.</td>
</tr>
<tr>
<td>• Cause and effect</td>
<td>Students explored how circuits need to be closed (cause) in order to power a load (effect); students explored how bee movements (the Waggle Dance) is a type of communication (cause) which leads to other bees finding food source and pollinating plants (effect).</td>
</tr>
</tbody>
</table>
• Built a brush bot & decorated as a bee
• Circuit basics
 • Load, energy source, conductor, switch
• Energy transfer
 • From battery to motor
 • Potential \(\rightarrow\) kinetic
• Engineering
 • Trouble-shooting, improving, trial & error
• Insect (bee)
 • Anatomy
 • Communication
 • Energy
• Math & ELA connections
 • Assessments
 • Taking it further
Thank you!

Questions?

Supported by the IMSA Steve and Jamie Chen Center for Innovation & Inquiry, and ComEd Community Education Grant.
References/Resources

