BUILDING A MICROBIAL FUEL CELL

PETER CLANCY, PH.D.
JOE GOLAB, PH.D.
PATRICK YOUNG

Galvanic or Voltaic Cell

- An electrochemical cell produces electrical energy from spontaneous oxidation-reduction (redox) reactions
- The cell consists of two different solid metals in the metal's salt solution connected by a salt bridge
- A redox reaction is a chemical reaction that transfers electrons between two species
- Reduction is the gain of electrons and Oxidation is the loss of electrons by a molecule, atom, or ion

Galvanic Cells

- \square Zn \rightarrow Zn²⁺ + 2e⁻ (Anode)
- \Box Cu²⁺ + 2e⁻ \rightarrow Cu (Cathode)
- One ½ cell reaction occurs in each container
- A salt bridge allows for charge neutrality in the solutions
- Current will not flow without the salt bridge to shuttle ions

Build One – Materials

- □ 0.1 M ZnCl₂ solution
- □ 0.1 M CuSO₄ solution
- 0.1 M NaCl solution (for salt bridge)
- At least 3 dixie cups
- □ Copper wire (14G+)
- Galvanized (zinc-coated) nail
- Filter paper (for salt bridge)
- Voltmeter with alligator leads

Build One - Procedure

- Pour ~ 20ml of ZnCl₂ solution in a dixie cup and add the galvanized nail so its head sticks out of the cup
- □ Pour ~ 20ml of CuSO₄ solution in a dixie cup and add the copper wire so its end sticks out of the cup
- Clip one voltmeter lead to the nail and the other lead to the wire Is there a voltage?
- Soak filter paper in NaCl solution and then roll the soaked paper into a tube shape
- □ Place one end of the NaCl soaked filter paper tube in the ZnCl₂ solution and the other end in the CuSO₄ solution Is there a voltage?

Summary

- The theoretical voltage generated by the Zn/Cu galvanic cell is +1.1V under standard conditions, i.e.
 - \blacksquare T = 25°C and P = 1 bar for gases,
 - Solids and liquids are pure, and
 - Solutions are 1 M in all species.
- Real voltage will vary
 - Has equilibrium been reached & maintained
 - Concentrations change over time
 - Temperature dependence

Microbial Fuel Cell

Microbial Fuel Cell—Alternate Anode

Taken from "Advanced Intro to MFC's", keegotech.com (2011)

Theoretical Voltages

Double-Biofilm Cell

Anode: $CH_3COOH + 2H_2O \rightarrow 2CO_2 + 8H^+ + 8e^ E^o = -0.097 \text{ V}$

Cathode: $2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$

NET: $CH_3COOH + 2O_2 + \rightarrow 2CO_2 + 2H_2O$ $E^o = +1.23 \text{ V}$

Steel Wool at Anode

Anode: Fe \rightarrow Fe²⁺ + 2e⁻¹

Cathode: $2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$

NET: $CH_3COOH + 2O_2 + \rightarrow 2CO_2 + 2H_2O$

 $E^{o} = -0.44 \text{ V}$

 $E^{o} = +1.33$

 $E^o = +1.33$

 $\mathbf{E}^o = +1.77 \, \mathbf{V}$

Potential MFC Construction Pitfalls

- Moisture content of soil
 - Maintain moisture with lid
- Electrical circuit considerations
 - Ensure top cathode contact with soil
 - Avoid short circuits between electrodes
 - Optimal load resistance
- Soil/microbial nutrients and additives
 - Sugary foods drinks can increase voltage, but beware of noxious-smelling byproducts
- Maintaining anoxic and oxygen-rich zones
 - Avoid air pockets during assembly
 - Iron (steel wool/nails) is good oxygen scavenger

History

- In 1780, Luigi Galvani contracts frog leg muscles with two different metals
- In 1799, Alessandro Volta invents a non-biological cell similar to the galvanic cell
- Later, Carlo Matteucci constructs a battery entirely out of biological material
- These discoveries paved the way for electrical batteries and Volta's cell is an IEEE Milestone (1999)

Practical Applications of MFC's

UN Sustainable Development Goals

Wastewater Treatment

- MFC's used in wastewater treatment can
 - effectively remove organic waste
 - generate electrical power
- 1.5% of electricity produced in US is used for wastewater treatment (15 GW)
- Successful pilot programs treated municipal wastewater in
 - Bottrop, Germany
 - Harbin, China

Recharging portable devices in the developing world

- MFC's built with local materials costing 10 to 20 US dollars have the demonstrated ability to
- Power LED lamps
- Recharge cell phones

