Background

- IMSA offers an “Engineering” class—a one-semester, project-based class, in which students apply concepts and principles of science in constructing their projects.
- One of the projects traditionally required for all students was a wind turbine project. Students optimized the design with the goal of producing maximum sustained power.
Motivation

- Create an alternative energy module which could address global issues such as energy supply and demand, climate change, and CO$_2$ emissions.
- Expand the wind-turbine project to an alternative energy project which addresses the four Engineering NGSS standards.
- Break project into two phases (alpha and beta) to show students how engineering projects are phased into process development and scale-up, with optimization occurring all along the way.
NGSS Engineering Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-ETS1-1</td>
<td>Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.</td>
</tr>
<tr>
<td>HS-ETS1-2</td>
<td>Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.</td>
</tr>
<tr>
<td>HS-ETS1-3</td>
<td>Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.</td>
</tr>
<tr>
<td>HS-ETS1-4</td>
<td>Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.</td>
</tr>
</tbody>
</table>
Benefits

- Students are exposed to:
 - Wide variety of concepts (power vs energy, Ohm’s law, electromagnetic induction, galvanic cells, how solar panels work)
 - Assessing environmental impact (CO$_2$ emissions, ecological and community impacts, etc.)
 - Test equipment (voltmeters, ammeters)
 - 2 phase projects (alpha and beta)
 - Written and oral reports
Activities: Preliminary

- Magnet/coil generator
- Hydrogen tube/spectroscope
- Solar panels

(Not pictured: modelling exercise)
Activities: Preliminary

Wind turbine

Microbial fuel cells

Galvanic cell
Features

- Contextual discussions
- Rubric design for project evaluation
- A project with a world-wide impact
Logistics

- Students divided into 6 groups of 3-4 students
- 3 technologies available: wind; solar-electrical; microbial fuel cells (MFC)—2 groups per technology
- Time of project expanded from 2 weeks (for old wind unit) to 4-1/2 weeks.
Stations

- Modelling
- Solar panel
- Spectroscope with hydrogen tube
- Wind turbine
- Magnet/solenoid generator
- MFC
- Galvanic cell
Performance Evaluation

- How should success be measured?
 - Technologies have different capabilities.
 - What would constitute a fair comparison?
- How should efficiency be defined?
 - What is most valued?
 - What are the real costs?
Student Evaluation Criteria

- Example:
 - Performance 25%
 - Health and Safety 11%
 - Nuisance and Aesthetics 11%
 - Marketability & Global Impact 11%
 - Reports (including innovation) 42%
First 3 Semesters—Self Assessment

- What worked well
 - Exploration stations
 - Beta design and build
 - Final report

- What didn’t work
 - Alpha presentations and rubric development
 - Alpha testing was an extended exploration—could use focusing questions developed by groups
 - Microbial fuel cells are highly variable and produce very low energy